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A FIRST LOOK



The virtues of large logs

 Multi-scale problems in renormalizable quantum field theories have perturbative 
    corrections of the form                            , which may spoil the reliability of the 
    perturbative expansion. However, they carry important physical information!

• Renormalization and factorization logs:

• High-energy logs:

• Sudakov logs:

 Sudakov logs are universal: they originate from infrared and collinear singularities:
    they exponentiate and can be resummed

• For inclusive observables: analytic resummation to high logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory.

• Power-suppressed corrections to QCD cross sections can be studied.

• Links to the strong coupling regime can be established for SUSY gauge theories.
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A classic way to organize Sudakov logarithms is in terms of the Mellin (Laplace) transform 
of the momentum space cross section (Catani et al. 93),

This displays the main features of Sudakov resummation

 Predictive: a k-loop calculation determines gk and thus a whole tower of logarithms to    
                    all orders in perturbation theory.

 Effective:  ● the range of applicability of perturbation theory is extended 
                     (finite order: αs log2N small.  NLL resummed: αs small);
                  ● the renormalization scale dependence is naturally reduced. 

 Theoretically interesting: resummation ambiguities related to the Landau pole give 
                                        access to non-perturbative power-suppressed corrections.

 Well understood: ● NLL Sudakov resummations exist for most inclusive observables at 
                                 hadron colliders, NNLL and approximate N3LL in simple cases.
                              ● Different `schools’ (USA, Italian, SCET ...) compete, complacency is                
                                 not an option, active and lively debate.



Color singlet hard scattering
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A well-established formalism exists for distributions in processes that are electroweak at 
tree level (Gardi, Grunberg 07).  For an observable r vanishing in the two-jet limit 

The Mellin (Laplace) transform,

exhibits log N singularities that can be organized in exponential form

where the exponent of the `Sudakov factor’ is in turn a Mellin transform

and the general form of the kernel is 

where A is the cusp anomalous dimension, and B and D have distinct physical characters.



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (Kulesza et al. 03)

CDF data on $Z$ production compared with QCD predictions at fixed order (dotted), with 
joint resummation (dashed), and with the inclusion of power corrections (solid).



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (Kulesza et al. 03)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
(joint) resummation (dashed), and with the inclusion of power corrections (solid).

Note shift in the distribution 
due to non-perturbative 

corrections extrapolated from 
all-order resummed result



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini, 05)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini, 05)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.

Note size of non-
logarithmic terms at 

NLO: the cross section 
is dominated by 
infrared effects



Complex observables

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with 
a jet veto (left) and Z production with a jet veto (right). For inclusion of NNLL, see also Becher and Neubert, 05/12. 

Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)
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Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)

Note the sharp 
reduction of the  

theoretical uncertaitnty
upon resummation



Complex observables

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with 
a jet veto (left) and Z production with a jet veto (right). For inclusion of NNLL, see also Becher and Neubert, 05/12. 

Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)

Note the sharp 
reduction of the  

theoretical uncertaitnty
upon resummation ...

... which does not 
always take place!



A SECOND LOOK



All factorizations separating dynamics at different energy scales lead to resummation of 
logarithms of the ratio of scales.

Renormalization is a textbook example.

  Renormalization factorizes cutoff dependence.

  Factorization requires the introduction of an arbitrarily chosen scale μ.

  Results must be independent of the arbitrary choice of μ.

  The simple functional dependence of the factors is dictated by separation of variables.

  Proving factorization is the difficult step: it requires all-order diagrammatic analyses.
     Evolution equations follow automatically.

  Solving RG evolution resums logarithms of Q2/μ2 into αs(μ2).
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Soft-collinear factorization

Leading integration regions in loop momentum space 
for soft-collinear factorization 

  Sudakov logarithms are remainders of infrared
     and collinear divergences.
 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Power-counting arguments show that soft 
     gluons decouple from the hard subgraph.

  Ward identities decouple soft gluons from jets 
     and restrict color transfer to the hard part.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.

  The matrix ΓS  correlates color exchange with 
     kinematic dependence.



Color flow
In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

       At tree level

For this process only two color structures are possible.  A basis in the space of available 
color tensors is 
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Tree-level diagrams and color flows for quark-antiquark scattering

The matrix element  is a vector in this space, and the Born cross section is

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv = SdivMBorn ; QCD : [Mdiv]J = [Sdiv]JL [MBorn]L



Sudakov factorization: pictorial

A pictorial representation of  Sudakov factorization for fixed-angle scattering amplitudes



Soft Matrices
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The soft function  S  obeys a matrix RG evolution equation

  ΓS is singular due to overlapping UV and collinear poles.

S is a pure counterterm.  In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,

The soft function  S  is a matrix, mixing the available color tensors. It is defined by a 
correlator of  Wilson lines.
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The determination of the soft anomalous dimension matrix  ΓS  is the keystone of the 
resummation program for multiparton amplitudes and cross sections.

 It governs the interplay of color exchange with kinematics in multiparton processes.
 It is the only source of multiparton correlations for singular contributions.
 Collinear effects are `color singlet’ and can be extracted from two-parton scatterings.



RECENT DEVELOPMENTS



  The matrix  ΓS  can be computed from the UV poles of S.

  Computations can be performed directly for the exponent:   
     the relevant  diagrams are called  “webs”.

  ΓS   appears highly complex at high orders.

  g-loop webs directly correlate color and kinematics of 
     up to  g+1  Wilson lines.

Surprising Simplicity
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The two-loop calculation (Aybat, Dixon, Sterman 06) leads to a surprising result:  for any number 
of external massless partons

➡  No new kinematic dependence;  no new matrix structure.
➡  κ is the two-loop coefficient of   γK (αs) ,  rescaled by the appropriate quadratic Casimir, 

A web contributing to the soft 
anomalous dimension matrix
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 All soft and collinear singularities can be collected in a multiplicative operator Z

 Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ inherits the dipole structure from the soft matrix. It reads

Note that all singularities are generated by integration over the scale of the coupling.

The Dipole Formula
The two-loop result led to an all-order understanding. For massless partons, the soft matrix 
obeys a set of exact equations that correlate color exchange with kinematics. 
The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It leads to an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 



 All known results for IR divergences of massless gauge theory amplitudes are recovered.

 The absence of multiparton correlations implies remarkable diagrammatic cancellations.

 The color matrix structure is fixed at one loop: path-ordering is not needed.

 All divergences are determined by a handful of anomalous dimensions.

 The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.

•  Quadrupole correlations may enter starting at three loops: they must be tightly 
             constrained functions of conformal cross ratios of parton momenta.

•  The cusp anomalous dimension may violate Casimir scaling beyond three loops.

•  The functional form of Δ is further constrained by: collinear limits, Bose symmetry    
            and transcendentality bounds (Becher, Neubert;  Dixon, Gardi, LM, 09).

•  A four-loop analysis indicates that Casimir scaling holds (Vernazza,11).

Features of the dipole formula
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 A hierarchical structure emerges when taking collinear limits.

•  A colored splitting amplitude governs pairwise collinear limits

•  Divergent terms of the splitting amplitude are determined by evolution

•  The splitting anomalous dimension is dictated by the dipole formula 

• Beware! Full universality breaks down for space-like splitting (Catani et al.,11)
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  The structure of virtual corrections is a simple generalization of planar color flow:

➡ Sum over all dipoles instead of just the adjacent ones!

•  For virtual corrections the result is accurate at least to NNLL for massless partons.
•  Virtual corrections must equal integrated real emission.
•  At some level this structure must match un-integrated real emission.



 Another class of singularities of massive 
   amplitudes is understood and resummed.

• When massive particles are pair-produced
      near threshold, Coulomb singularities  logpβ/βk  arise.

• They can be organized using effective field theory (NRQCD).
• A novel factorization theorem has been derived and applied 

     to heavy colored particle production (Beneke et al., 09).

Massive particles
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  The striking simplicity of the massless result does not carry over to massive partons.

• The g-loop exponent will generally involve (g+1)-parton correlations.
• An analytic calculation at two loops was carried out (Becher, Neubert; Ferroglia et al.; 

       Mitov et al.; Kidonakis, 09) with interesting results.

Three-parton correlations 
at two loops

• The result still displays unexpected structure and simplicity: 
       note the factorized dependence on cusp angles.

Soft and Coulomb gluons at two loops



 Introducing `Mandelstam’ color operators, and using color and momentum conservation

   it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit

•  The operator Z1 is s-independent and proportional to the unit matrix in color space.

•  Color dependence and s dependence are collected in the factor

        where the coupling dependence is (once again!) completely determined by the cusp 
        anomalous dimension and by the β function, through the function (Korchemsky 94-96)

 The simple structure of the high-energy operator governs Reggeization and its breaking.

The dipole formula at high energy
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  The LL Regge trajectory is universal and obeys Casimir scaling.
  Scattering of arbitrary color representations can be analyzed

     Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

 

     LL Reggeization of the 3 and 15 t-channel exchanges follows.

 At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and 
   the dipole operator becomes diagonal in a t-channel basis.

 
 If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,

    then the hard function is an eigenstate of the color operator Tt2

 Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

Reggeization of leading logarithms
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Scattering for generic color exchange



 The high-energy infrared operator can be systematically expanded beyond LL, using the 
    Baker-Campbell-Hausdorff formula.  At NLL one finds a series of commutators

 The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

 At NNLL Reggeization generically breaks down also for the real part of the amplitude.

• At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

• At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

 NOTE  ● In the planar limit (NC ➝∞) all commutators vanish and Reggeization holds 
                   also beyond NLL (as perhaps expected from string theory).
                ● Possible quadrupole corrections to the dipole formula cannot come to the rescue.    
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  We are now understanding the structure of the multileg exponent.
     (Gardi et al. 10-11;  Mitov, Sterman, Sung 10) 

•  Multiparton webs are sets of diagrams whose kinematic and color 
         structures mix. They are not all irreducible.

•  Modified color factors are given by web mixing matrices

•  All subleading poles are determined by lower-order webs.

Multiparton webs
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Is this a web?

A web

  Infrared divergences of gauge scattering amplitudes exponentiate.

  The exponent can be computed directly in terms of a subset of the 
     original diagrams with modified color factors, called `webs’.
     (Gatheral 83; Frenkel, Taylor 84)

 For amplitudes with two hard partons (color singlet), webs have a 
    precise topological characterization and special properties.

•  Webs are `two-eikonal-irreducible’ diagrams.
•  Webs have modified color factors that can be computed recursively.
•  Webs have no nested UV subdivergences.
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  A systematic study of soft-gluon dynamics beyond the eikonal
    approximation has been undertaken (Laenen et al. 08, 10).

•  A class of factorizable contributions exponentiate via NE webs

•  “Feynman rules” for the NE exponent, including “seagull” vertices.

•  Non-factorizable contribution can be studied using Low’s theorem.

  Hadronic cross sections near partonic threshold receive non-singular logarithmic  
     corrections αsp logk(1 - z), or αs

p logkN/N, which may be relevant for phenomenology.
     Can they also be organized and resummed? (Kraemer et al.;  Vogt et al.;  Grunberg, ...)

• For two-parton processes, O(N0) contributions exponentiate (Laenen, LM, 03).
• Phenomenological evidence indicates that also `sub-eikonal’ logs partly exponentiate.

• An ansatz summarizes the resummable for Drell-Yan (and DIS) (Laenen et al., 06).
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• An ansatz summarizes the resummable for Drell-Yan (and DIS) (Laenen et al., 06).

Beyond the eikonal
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  Classic threshold resummation (for σTOT) is possible to `well-approximated’ N3LL.

  At large measured transverse momentum one 
     is again close to partonic threshold.

• pT-threshold resummation now performed to 
       approximate N3LL (Becher, Schwartz, 11).

  Transverse momentum resummation is available
     at NNLL (Bozzi et al., 10, Becher, Neubert 11-12).

• Favorable comparison to Tevatron data.
• Small theoretical uncertainty.
• Awaiting LHC data comparison.

  Caveat: detailed SCET analysis
     (Becher and Neubert, 11)
     indicates (large) modification of 
     3-loop coefficient!

• Theoretically interesting
       `collinear anomaly’, transverse
       momentum pdf issues.

  NLL predictions for pT spectrum
     also from SCET (Mantry, Petriello, 10)

Electroweak annihilation

qT spectrum of Z bosons at Tevatron (D0) compared to NNLL resummation

Large pT D0 data vs. `threshold’ resummation



Higgs production

N3LL resummed cross section for Higgs 
production via gluon fusion at LHC

NNLL resummed pT distribution for Higgs 
production via gluon fusion at LHC

 The total cross section for gg->H is known to 
    N3LL and NNLO, with NLO EW corrections.

• One of the best-known observables in the SM.

• A combined analysis (Ahrens et al. 11) gives
        a 3% (th) + 8% (pdf) + 1% (mq) uncertainty.

• Ongoing debate on theoretical and pdf 
        uncertainty (Baglio et al. 11).

 The pT distribution for gg->H is known to 
    NNLL and NNLO (M. Grazzini et al. 07, 10
     Ahrens et al. 11)

• Resummation reduces scale uncertainty

• A subtle polarization effect uncovered but not 
        implemented yet (Catani, Grazzini, 10) 

• Impact of revised three-loop coefficient 
        must be gauged



Top distributions
  The calculation of the two-loop massive anomalous 

     dimension matrix makes it possible to perform NNLL 
     resummation for generic distributions (Ahrens et al., 09).

• Invariant pair mass distribution shows remarkable 
        agreement with CDF data (LHC awaited).

• Negligible theoretical uncertainty.
• Different choices of kinematics and frame possible,

        vast menu of distributions available.
NNLL top-antitop invariant mass 
spectrum compared to CDF data

NNLL top-antitop FB asymmetry 
compared to CDF data

  The Tevatron top-antitop FB asymmetry can be 
     computed in QCD at NNLL+NLO (Ahrens et al., 09).

• Negligible impact on NLO result: the solution to the 
        Tevatron puzzle is not QCD higher orders.

 Resummation can also be used in a simplified way to 
    compute approximate higher order corrections and 
    distributions (Kidonakis, 10-11)

• Some conceptual and technical issues avoided; partial 
        reduction in scale uncertainties.Top rapidity distribution at approximate NNLO



  First studies of event shapes with exact NNLO information and (well) approximated    
     N3LL resummation have appeared (Becher, Schwartz, 08; Schwartz, Cien;  Abbate et al. 10). 

  The studies deploy neat tricks (Padé approximants, numerical determination of 
     2-loop soft coefficients) and great care (hadronization, b-mass, QED corrections).

  Perturbative agreement between SCET and standard resummation (Gehrmann et al., 11).

  Significant differences remain in the final results for the strong coupling.

  Many possible sources of discrepancy, the main suspect remains hadronization/MC.

  The problem is still not fully understood: do we really know αs to percent accuracy?

Event shapes

�s(M2
Z) = 0.1172 ± 0.0022 thrust (BS)

�s(M2
Z) = 0.1220 ± 0.0031 jetmass (SC)

�s(M2
Z) = 0.1135 ± 0.0010 thrust (AFHMS)

Comparing the αs fit quality for thrust and heavy jet mass at N3LL (SC)
Joint fit of αs and hadronization parameter 

Ω1 from N3LL thrust (AFHMS)



Miscellanea

NLL K-factors for squarks and gluinos

NNLL vs. NLO φ* distribution

NLL K-factors for squarks and gluinos
NLL dijet mass distribution for fixed N-jettiness

 Soft gluon resummations are being applied to SUSY particles.

• SUSY particles are heavy (and getting heavier ...), close
        to threshold: corrections useful for exclusion limits.

• Gaugino and slepton production (singlets) (Klasen 06-11).

• Colored sparticle production (requires soft matrices)
        (Kulesza et al. 09-11;  Beneke et al., general color, 10).

 New observables, designed by experiments, require (and
    get) soft gluon resummation (Banfi et al. 09-11).

• Variables related to the angle between leptons are more  
        accurately measured than the pT of the lepton pair.

• Resummation is crucial close to Born configuration.

 Complex jet observables are designed and resummed. 

• Jet shapes to study internal structure of jets, useful for
        boosted heavy particle production (Ellis et al. 09-11).

• Dijet mass distribution with fixed `background’ event 
        shape (`N-jettiness’), extension of SCET (Bauer et al. 11). 



Jactuum caveat emptor

Spectator interaction via Glauber gluon

Non-global logarithms for energy flow

The impact of non-global logarithms on jet shapes

  As the jet observables proliferate and are resummed, 
     several caveats must be kept in mind.    

• Glauber gluons: they cancel in inclusive jet cross sections
       (Aybat, Sterman 09), but no proof if jets are opened up.
       They are not in SCET, might be added (Bauer et al., 10).

• Non-global logarithms: arise whenever gluon emission phase 
       space is cut up (Dasgupta, Salam, 01); affect observables at single 
       logarithmic level; resummable only at large NC.

• Jet algorithms: the choice of jet algorithm affects both non-
       global and ordinary Sudakov logarithms. Clustering correlates 
       `independent’ gluons, except for anti-kT (Banfi et al., 05-06).

  A striking example of the impact of NG logs on jet shapes.   

• Jet shapes measure properties of a single jet in a multijet 
       event. They are generically affected by NG logs.

• For a typical jet shape (`in-jet angularity’) NG logs change
       the height of the (formally NLL) distribution by 15-20%   
       in the small-R limit (Banfi et al., 10).



Hadronic event shapes

  An interesting alternative to the use of jets, which bypasses the need for an algorithm, is    
     to introduce global event shapes, in analogy to those used in e+e- annihilation.

• The hadronic environment requires suppressing the beam region.

  NLL+NLO resummation can be performed numerically with the program Caesar     
     recently generalized to hadron collisions (Banfi, Salam, Zanderighi, 10).

  Numerically resummable event shapes are carefully characterized:
• Functional constraints. 
• Continuous globalness.
• Recursive IR safety.

 A vast variety of event shapes is introduced, 
    categorized and resummed.

• Simple example: transverse thrust.

 Relevant issues for NLL+NLO resummation of
    event shapes are dealt with in detail.

• Control of non-global logs.
• Transition particle-jet (algorithm issues).
• Possible superleading logs.
• Matching to NLOJET++.
• Power corrections (analytic and MC).
• Impact of underlying event.

A menu of NLL-resummed hadronic event shapes



OUTLOOK



Summary
  Resummations are a powerful tool both for theory and for phenomenology.
✓  Explore the boundary between perturbative and non-perturbative physics.
✓  Are necessary for precision phenomenology.

  Resummations have a long history,  but 
✓  past few years have seen very intense LHC-motivated activity and theoretical progress.

  Factorization theorems  ⇒  Evolution equations  ⇒  Exponentiation.
✓  Sudakov factorization ⇒ soft-gluon resummation (also formalized by SCET).
✓  Multiparton processes require anomalous dimension matrices.

  Remarkable progress on the theory side.
✓  We are understanding the all-order structure of the perturbative exponent.
✓  For massless partons the dipole formula may give the definitive answer.
✓  For massive partons the general two-loop anomalous dimension matrix is known.
✓  SCET provides new insights: momentum space resummation, `collinear anomaly’.
✓  Ongoing efforts to go beyond the eikonal approximation.

  A vast array of phenomenological  applications, many vital for LHC precision physics. 
✓  Electroweak annihilation processes are known to high logarithmic accuracy.
✓  Top distributions can be computed with unprecedented theoretical precision.
✓  The strong coupling can be precisely determined from resummed event shapes.
✓  Hadronic event shapes provide a flexible alternative tool for hadron collisions.

  We have come a long way, but each step forward brings new insight and new questions ...
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