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Topics interleaved in this talk

• Some key ideas built into parton shower event 
generators.

• How some of these ideas germinated, influenced by 
DESY results.

• Formulas that sum series with large logarithms and 
their relation to parton showers.

• Prospects for improving the parton shower event 
generators.
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Parton showers describe jets
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Why are there jets?

• Bjorken, Berman and Kogut 
(1971) had it figured out 
before jets were seen and 
before QCD.

• “... the isolated high PT 
partons will communicate 
with the ‘wee’ partons by 
cascade emission of partons.”
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DESY provided early 
evidence

• The PETRA 
accelerator had 
enough energy to 
make jets clearly 
visible. 

• The PETRA 
experiments had 4π 
detectors, so that one 
could be convinced 
that two and three jet 
events existed with 
single event displays.

from G. Wolf, Multiparticle Conference, 1983
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Why are there jets in QCD?
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How showers work in QCD,
with some history
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Showers and factorization
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Assembling QCD showers

• Think of shower starting at 
hard interaction and 
proceeding to softer splittings.

• Most probable: soft and 
collinear splittings.

• Such splittings from a high PT  
parton builds up a jet.

• Very hard interactions happen 
with probability     .αs
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Early event generators
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Idea exchanges

• My university, the University of Oregon, is proud to 
have organized the Oregon Workshop on Super High 
Energy Physics, 18 March - 10 August, 1985.

• Event generators were a major subject.

• Participants included R.K. Ellis, R. Field, T. Gottschalk, 
R. Odorico, F. Paige, S. Protopopescu, T. Sjöstrand, and 
B. Webber. 

• My opinion: this sort of exchange is important.
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Backwards evolution
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Color coherence
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Implementing color coherence
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What about Pythia?
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Leading color approximation
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Color coherence with dipoles
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Understanding showers 
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Structure of shower evolution

splitting no splitting
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split

exponentiate the probability of not splitting

this is the 
Sudakov factor
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Summing logs

dσ

dp⊥dY

• There are large logarithms log(M2
Z/p2

⊥).

• Measure the p⊥ of the Z-boson for p2
⊥ �M2

Z ,

• We know how to sum these in QCD.

Wednesday, May 30, 2012



dσ

dp⊥dY
≈

�
d
2b

(2π)2
e
ib·p⊥

×
�

a,b

� 1

xa

dηa

ηa

� 1

xb

dηb

ηb
fa/A

�
ηa, C

2
/b2

�
fb/B

�
ηb, C

2
/b2

�

× exp

�
−

� M2

C2/b2

dk2
⊥

k2
⊥

�
A(αs(k2

⊥)) log
�

M
2

k2
⊥

�
+ B(αs(k2

⊥))
��

×
�

a�,b�

H
(0)
a�b� Ca�a

�
xa

ηa
,αs

�
C

2

b2

��
Cb�b

�
xb

ηb
,αs

�
C

2

b2

��
.

A(αs) = 2 CF
αs

2π
+ 2 CF

�
CA

�
67
18
− π2

6

�
− 5 nf

9

� � αs

2π

�2
+ · · · ,

B(αs) = −4
αs

2π
+

�
−197

3
+

34nf

9
+

20π2

3
− 8nfπ2

27
+

8ζ(3)
3

�� αs

2π

�2
+ · · · ,

Ca�a(z,αs) = δa�aδ(1− z) +
αs

2π

�
δa�a

�
4
3

(1− z) +
2
3

δ(1− z)
�
π2 − 8

��
+ δag z(1− z)

�

C = 2e−γExA =

�
M2

s
eY xB =

�
M2

s
e−Y

The QCD answer,

Wednesday, May 30, 2012



αs(M2)n log(b2M2)n+1

αs(M2)n log(b2M2)2n

not

• In exponent,

• The most important part is the exponentiation in b-space.
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How to check
Z. Nagy and DES
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Was this inevitable?
• One might imagine that because parton splitting 

functions are correct in the limits of soft and 
collinear splittings, all large log summations will 
come out correctly.

•  I will argue that this claim is far from obvious.

define 
observable

event 
generator

correct 
result

Analysis 
routine
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A critique of pure 
perturbation theory
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A critique of pure showers
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An improved version
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This is harder at NLO
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The goal

Wednesday, May 30, 2012



Color
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Summary

• After 32 years since 1980, developing parton shower 
ideas is still an active field.

• Progress is slow because this is not easy.

• Progress is happening because this is important.

• In the past few years, there have been substantial 
improvements in how parton showers work.

• More improvements are coming.
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