Understanding parton showers

Davison E. Soper University of Oregon

DESY, May 2012

Wednesday, May 30, 2012

Topics interleaved in this talk

- Some key ideas built into parton shower event generators.
- How some of these ideas germinated, influenced by DESY results.
- Formulas that sum series with large logarithms and their relation to parton showers.
- Prospects for improving the parton shower event generators.

Parton showers describe jets

Wednesday, May 30, 2012

Why are there jets?

- Bjorken, Berman and Kogut (1971) had it figured out before jets were seen and before QCD.
- "... the isolated high P_T partons will communicate with the 'wee' partons by cascade emission of partons."

DESY provided early evidence

- The PETRA

 accelerator had
 enough energy to
 make jets clearly
 visible.
- The PETRA experiments had 4π detectors, so that one could be convinced that two and three jet events existed with single event displays.

from G. Wolf, Multiparticle Conference, 1983

Why are there jets in QCD?

• Consider a gluon that splits into two gluons.

• The amplitude is biggest when $(p_1 + p_2)^2 \approx 0$.

 $\implies p_1$ and p_2 are nearly collinear, or one is soft.

• Iterating this, we expect to make jets of roughly collinear particles.

How showers work in QCD, with some history

Showers and factorization

- If $(p_1 + p_2)^2 \ll Q^2$, we can set $(p_1 + p_2)^2 = 0$ in H.
- That is, the amplitude factorizes into

$H \times$ splitting function

Assembling QCD showers

- Think of shower starting at hard interaction and proceeding to softer splittings.
- Most probable: soft and collinear splittings.
- Such splittings from a high $P_{\rm T}$ parton builds up a jet.
- Very hard interactions happen with probability α_s .

Early event generators

• Late 1970s:

partonic cross section \times fragmentation functions.

- 1980: iterative splitting (for $e^+e^- \rightarrow$ hadrons)
 - Fox and Wolfram
 - Odorico

- Early 1980s: work at Lund on event generators.
 - String fragmentation for hadronization.
 - Bo Andersson (with student Torbjörn Sjöstrand).

Idea exchanges

- My university, the University of Oregon, is proud to have organized the Oregon Workshop on Super High Energy Physics, 18 March - 10 August, 1985.
- Event generators were a major subject.
- Participants included R.K. Ellis, R. Field, T. Gottschalk, R. Odorico, F. Paige, S. Protopopescu, T. Sjöstrand, and B. Webber.
- My opinion: this sort of exchange is important.

Backwards evolution

- In an event generator based on factoring soft from hard interactions, we go backwards in time for the initial state.
- This is pretty unintuitive.
- It was introduced in 1985 by Sjöstrand.

• A similar version was introduced by Gottschalk.

Color coherence

• Suppose that a gluon splits into two almost collinear gluons.

- Then each daughter radiates a soft, wide angle gluon.
- This is as if the soft gluon were emitted from the mother.

• Or, rather, to an on-shell approximation to the mother.

Implementing color coherence

- Webber and Marchesini (1984) showed how to implement this in an event generator.
- This became the basis of Herwig (Webber, 1984).
- Put the wide angle splittings first.
- This involves an approximation for the azimuthal angle distribution.

What about Pythia?

- Pythia orders splittings by a measure of hardness.
- Then later in physical time means later in the shower.
- In older versions, used virtuality $(p^2 m^2)$.
- Now k_T^2 .
- (Actually, one can argue that $(p^2 m^2)/E$ is best.)
- Early Pythia just imposed a cut on angles.
- This roughly simulates the coherence effect.

Leading color approximation

- Parton shower event generators track color.
- Mostly they use the "leading color" approximation.
- Gluons carry color $\mathbf{3} \times \mathbf{\overline{3}}$ rather than $\mathbf{8}$.
- Corrections are order $1/N_c^2$ $(N_c = 3).$
- Improvements on this are part of the workshop "Event Generators and Resummation."

Color coherence with dipoles

- In today's hardness ordered showers, color coherence is achieved based on a dipole picture.
- This is fairly simple within the leading color approximation.
- \bullet Consider soft radiation from a qqg system.

The wide angle dipole gives The narrow angle dipole gives a wide angle pattern. The narrow angle pattern.

Understanding showers

Structure of shower evolution

- State $|\rho\rangle$.
- Probability for momenta p and flavors f is $(\{p, f\}_m | \rho)$.
- (Think about color and spin later.)
- Evolution with shower time t: $|\rho(t)\rangle = \mathcal{U}(t,0)|\rho(0)\rangle$

$$\frac{d}{dt} \mathcal{U}(t, t') = [\mathcal{H}_{I}(t) - \mathcal{V}(t)] \mathcal{U}(t, t')$$
splitting no splitting

$$\frac{d}{dt}\mathcal{U}(t,t') = [\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t)]\mathcal{U}(t,t')$$

split

• Since $\mathcal{V}(t)$ is simple, rewrite as

$$\mathcal{U}(t,t') = \mathcal{N}(t,t') + \int_{t'}^{t} d\tau \ \mathcal{U}(t,\tau) \ \mathcal{H}_{\mathrm{I}}(\tau) \ \mathcal{N}(\tau,t')$$

exponentiate the probability of not splitting

$$\mathcal{N}(t,t') = \mathbb{T} \exp \left\{ -\int_{t'}^{t} d\tau \, \mathcal{V}(\tau) \right\} \qquad \begin{array}{l} \text{this is the} \\ \text{Sudakov factor} \end{array}$$

• Iterated, gives a picture of what shower evolution does...

Summing logs

- Consider $A + B \rightarrow Z + X$.
- Measure the p_{\perp} of the Z-boson for $p_{\perp}^2 \ll M_Z^2$,

 $\frac{d\sigma}{dp_{\perp}dY}$

- There are large logarithms $\log(M_Z^2/p_{\perp}^2)$.
- We know how to sum these in QCD.

The QCD answer,

$$\begin{split} \frac{d\sigma}{d\boldsymbol{p}_{\perp}dY} &\approx \int \frac{d^{2}\boldsymbol{b}}{(2\pi)^{2}} e^{\mathrm{i}\boldsymbol{b}\cdot\boldsymbol{p}_{\perp}} \\ &\times \sum_{a,b} \int_{x_{a}}^{1} \frac{d\eta_{a}}{\eta_{a}} \int_{x_{b}}^{1} \frac{d\eta_{b}}{\eta_{b}} f_{a/A}(\eta_{a}, C^{2}/\boldsymbol{b}^{2}) f_{b/B}(\eta_{b}, C^{2}/\boldsymbol{b}^{2}) \\ &\times \exp\left(-\int_{C^{2}/\boldsymbol{b}^{2}}^{M^{2}} \frac{d\boldsymbol{k}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}} \left[A(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\log\left(\frac{M^{2}}{\boldsymbol{k}_{\perp}^{2}}\right) + B(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\right]\right) \\ &\times \sum_{a',b'} H_{a'b'}^{(0)} C_{a'a}\left(\frac{x_{a}}{\eta_{a}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) C_{b'b}\left(\frac{x_{b}}{\eta_{b}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) \ . \end{split}$$

$$\begin{split} A(\alpha_{\rm s}) &= 2 \, C_{\rm F} \, \frac{\alpha_{\rm s}}{2\pi} + 2 \, C_{\rm F} \, \left\{ C_{\rm A} \left[\frac{67}{18} - \frac{\pi^2}{6} \right] - \frac{5 \, n_{\rm f}}{9} \right\} \left(\frac{\alpha_{\rm s}}{2\pi} \right)^2 + \cdots , \\ B(\alpha_{\rm s}) &= -4 \, \frac{\alpha_{\rm s}}{2\pi} + \left[-\frac{197}{3} + \frac{34 n_{\rm f}}{9} + \frac{20 \pi^2}{3} - \frac{8 n_{\rm f} \pi^2}{27} + \frac{8 \zeta(3)}{3} \right] \left(\frac{\alpha_{\rm s}}{2\pi} \right)^2 + \cdots , \\ C_{a'a}(z, \alpha_{\rm s}) &= \delta_{a'a} \delta(1-z) + \frac{\alpha_{\rm s}}{2\pi} \left[\delta_{a'a} \left\{ \frac{4}{3} \left(1-z \right) + \frac{2}{3} \, \delta(1-z) \left(\pi^2 - 8 \right) \right\} + \delta_{ag} \, z(1-z) \right] \\ x_{\rm A} &= \sqrt{\frac{M^2}{s}} e^Y \qquad x_{\rm B} = \sqrt{\frac{M^2}{s}} e^{-Y} \qquad C = 2 e^{-\gamma_E} \end{split}$$

• The most important part is the exponentiation in *b*-space.

• In exponent,

$$\alpha_{\rm s}(M^2)^n \log(\boldsymbol{b}^2 M^2)^{n+1}$$

not

$$\alpha_{\rm s}(M^2)^n \log(\boldsymbol{b}^2 M^2)^{2n}$$

$$\begin{split} \frac{d\sigma}{d\boldsymbol{p}_{\perp}dY} &\approx \int \frac{d^{2}\boldsymbol{b}}{(2\pi)^{2}} e^{\mathrm{i}\boldsymbol{b}\cdot\boldsymbol{p}_{\perp}} \\ &\times \sum_{a,b} \int_{x_{a}}^{1} \frac{d\eta_{a}}{\eta_{a}} \int_{x_{b}}^{1} \frac{d\eta_{b}}{\eta_{b}} f_{a/A}(\eta_{a}, C^{2}/\boldsymbol{b}^{2}) f_{b/B}(\eta_{b}, C^{2}/\boldsymbol{b}^{2}) \\ &\times \exp\left(-\int_{C^{2}/\boldsymbol{b}^{2}}^{M^{2}} \frac{d\boldsymbol{k}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}} \left[A(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\log\left(\frac{M^{2}}{\boldsymbol{k}_{\perp}^{2}}\right) + B(\alpha_{s}(\boldsymbol{k}_{\perp}^{2}))\right]\right) \\ &\times \sum_{a',b'} H_{a'b'}^{(0)} C_{a'a}\left(\frac{x_{a}}{\eta_{a}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) C_{b'b}\left(\frac{x_{b}}{\eta_{b}}, \alpha_{s}\left(\frac{C^{2}}{\boldsymbol{b}^{2}}\right)\right) \,. \end{split}$$

• Parton shower event generators can (maybe) do this!

- The Z-boson gets p_{\perp} because of recoils against initial state radiation. (Parisi & Petronzio.)
- Parton shower splitting functions match QCD for soft and collinear radiation.

How to check

Z. Nagy and DES

• Use parton shower evolution equations.

$$\frac{d}{dt}\mathcal{U}(t,t') = \left[\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t)\right]\mathcal{U}(t,t')$$

- Fourier transform from k_{\perp} to b.
- Solve the evolution equations analytically with the appropriate approximations.

$$\begin{split} & \frac{d\sigma}{dp_{\perp}dY} \approx \int \frac{d^{2}b}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{p}_{\perp}} \qquad \text{Exponentiation} \\ & \times \sum_{a,b} \int_{x_{a}}^{1} \frac{d\eta_{a}}{\eta_{a}} \int_{x_{b}}^{1} \frac{d\eta_{b}}{\eta_{b}} f_{a/A}(\eta_{a}, C^{2}/b^{2}) f_{b/B}(\eta_{b}, C^{2}/b^{2}) \\ & \times \exp\left(-\int_{C^{2}/b^{2}}^{M^{2}} \frac{d\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2}} \left[A(\alpha_{s}(\mathbf{k}_{\perp}^{2}))\log\left(\frac{M^{2}}{\mathbf{k}_{\perp}^{2}}\right) + B(\alpha_{s}(\mathbf{k}_{\perp}^{2}))\right]\right) \\ & \times \sum_{a',b'} H_{a'b'}^{(0)} C_{a'a}\left(\frac{x_{a}}{\eta_{a}}, \alpha_{s}\left(\frac{C^{2}}{b^{2}}\right)\right) C_{b'b}\left(\frac{x_{b}}{\eta_{b}}, \alpha_{s}\left(\frac{C^{2}}{b^{2}}\right)\right) . \end{split}$$
$$A(\alpha_{s}) = 2C_{F}\frac{\alpha_{s}}{2\pi} + 2C_{F}\left\{C_{A}\left[\frac{67}{18} - \frac{\pi^{2}}{6}\right] - \frac{5n_{f}}{9}\right\}\left(\frac{\alpha_{s}}{2\pi}\right)^{2} + \cdots , \\ B(\alpha_{s}) = -4\frac{\alpha_{s}}{2\pi} + \left[-\frac{197}{3} + \frac{24n_{s}}{9} + 20\pi^{2} - \frac{8n_{f}\pi^{2}}{3} + \frac{8C(2)}{3}\right]\left(\frac{\alpha_{s}}{2\pi}\right)^{2} + \cdots , \\ C_{a'a}(z, \alpha_{s}) = \delta_{a'a}\delta(1-z) + \frac{\alpha_{s}}{2\pi}\left[\delta_{a'a}\left\{\frac{\pi}{2}(1-z) + \frac{2}{3}\left(z-z\right)\left(\frac{\pi^{2}}{3}-z\right)\right\} + \delta_{ac}z(1-z)}\right] \end{split}$$

Was this inevitable?

• One might imagine that because parton splitting functions are correct in the limits of soft and collinear splittings, all large log summations will come out correctly.

• I will argue that this claim is far from obvious.

• In the case of the p_{\perp} distribution of Z-bosons:

* Some "minor" details matter.

- * If we get the "minor" details right, it works.
- * There are some "major" details that are wrong in standard showers: color and spin.
- * These don't matter in this case.
- Other cases are more complicated.

* One suspects that "superleading" logarithms in cross sections to have gaps between jets are not correctly calculated (Forshaw, Kyrieleis, Seymour).

A critique of pure perturbation theory

- Consider a cross section involving N jets at a single scale Q^2 .
- Perturbation theory gives

 $\sigma(N \text{ jet}) = \alpha_s^A(Q^2) \left\{ C_0 + \alpha_s(Q^2) C_1 + \alpha_s^2(Q^2) C_2 + \cdots \right\}$

- At LO, we have C_0 , at NLO we have C_0 and C_1 .
- But what if we need a $\tilde{\sigma}(N \text{ jet})$ that is infrared sensitive?
- Eq. our calorimeter responds differently to π^{\pm} and π^{0} .
- The perturbative formula does not help.
- A shower event generator (with hadronization) does help.

A critique of pure showers

- The standard shower has Sudakov exponentials and small p_{\perp} approximations for splitting.

• The small p_{\perp} approximations.

• Maybe the exact matrix element would be better. But that lacks the Sudakov factors.

An improved version

• Define a Sudakov corrected matrix element,

- This is the essential idea of Catani, Krauss, Kuhn, and Webber for matched showers.
- There is more to it than this.
- There are several methods.
- This has been a subject of discussion at the workshop "Event Generators and Resummation."

This is harder at NLO

• Expanding

$$\begin{aligned} \mathcal{U}(t,t') &= 1 + \int_{t'}^{t} d\tau_1 \, \left[\mathcal{H}_{\rm I}(\tau_1) - \mathcal{V}(\tau_1) \right] \\ &+ \int_{t'}^{t} d\tau_2 \int_{t'}^{\tau_2} d\tau_1 \, \left[\mathcal{H}_{\rm I}(\tau_2) - \mathcal{V}(\tau_2) \right] \left[\mathcal{H}_{\rm I}(\tau_1) - \mathcal{V}(\tau_1) \right] \\ &+ \cdots \end{aligned}$$

we see that shower evolution applied to the Born $|\mathcal{M}|^2$ generates perturbative corrections.

- We need to replace the shower $\mathcal{H}_{I} \mathcal{V}$ for the hardest splitting by the exact NLO correction.
- This has been a subject of discussion at the workshop "Event Generators and Resummation."

The goal

- Using a shower matched to LO or NLO perturbative calculations, we want to produce good approximate results for infrared sensitive measurements.
- At the same time, for an infrared safe measurement with a single scale Q^2 , we should match (for LO) C_0 or (for NLO) C_0 and C_1 in

 $\sigma(\text{IR safe}) = \alpha_s^A(Q^2) \left\{ C_0 + \alpha_s(Q^2) C_1 + \alpha_s^2(Q^2) C_2 + \cdots \right\}$

Color

- In $|\rho(t)\rangle = \mathcal{U}(t,0)|\rho(0)\rangle$, what is $|\rho(t)\rangle$?
- It cannot be simply the probability density for the partons to have certain momenta and flavors.
- Partons carry color (& spin, but I omit that for today.)
- We need quantum statistical mechanics.
- We need the quantum density operator:

$$\sum_{c,c'} \left| \{c\}_m \right\rangle \rho(\{p, f, c', c\}_m, t) \left\langle \{c'\}_m \right|$$

• $|\rho(t)\rangle$ represents the function $\rho(\{p, f, c', c\}_m, t)$.

$$\frac{d}{dt}\mathcal{U}(t,t') = \left[\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t)\right]\mathcal{U}(t,t')$$

 $\mathcal{H}_{I}(t)$ and $\mathcal{V}(t)$ become matrices in color space.

- With the leading color approximation, this is simple.
- Beyond the leading color approximation, this is not simple.
- $\mathcal{V}(t)$ is a non-trivial matrix in general.
- Then the Sudakov factor

$$\mathcal{N}(t,t') = \mathbb{T} \exp\left\{-\int_{t'}^{t} d\tau \,\mathcal{V}(\tau)\right\}$$

is not nice.

• Progress in this is a subject at the workshop.

Summary

- After 32 years since 1980, developing parton shower ideas is still an active field.
- Progress is slow because this is not easy.
- Progress is happening because this is important.
- In the past few years, there have been substantial improvements in how parton showers work.
- More improvements are coming.