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Background

I There is very strong evidence that we are living in a de-Sitter
vacuum with a very small cosmological constant.

I There is strong evidence that our universe has gone through
an inflationary period, when the vacuum energy is below the
Planck scale but much higher than the TeV scale.

I Can string theory accommodate these phenomena ? Or even
explain them ?

I Pressing Question : why dark energy contributes 70% of the
content of our universe ?
Why not 99.999999....999999% ?
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Cosmic Landscape

Views of the Cosmos through Strings and Branes :

I String theory is the only viable model for quantum gravity.

I String scale is so high that there is very little hope that
laboratory experiments can directly detect its properties.

I Cosmological data and properties hopefully will tell us more
about string theory and the specific solution that we live in.

String theory also allows us to ask more philosophical questions
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I There are many RR fields that reduce to dozens of types of
4-form fluxes in 4-dim.

I They take constant values so their contributions to the
vacuum energy density take constant values.

I Bousso-Polchinski (0004134) pointed out that their quantized
values may explain why string theory may have a very small
CC as one of its solutions.

I For string scale around GUT scale, J > 20 will give a CC
comparable to the observed value.

I This explains how string theory can yield such a small CC.

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 4/32
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Figure 1: The allowed values of the four-form energy density are given by the
radius-squared of points in the grid, whose dimension is the number of four-forms
J . The spacing in direction i is qi. The negative of the bare cosmological constant
corresponds to a (J − 1)-dimensional sphere, and cancellation is possible if there
is at least one grid point sufficiently close to the sphere.

An important feature of this result is that that the qi need not be exceed-
ingly small if there are more than two four-form fields. In order to achieve
a small λ, it is sufficient that there be a discrepancy between the magnitude
of λbare and that of the charges. For fixed charges, the task of cancellation
actually becomes easier, the larger the bare cosmological constant. This can
be understood from Fig. 1. The larger the shell, the more points it will
contain.6 The results (2.24) to (2.26) treat the ni as essentially continuous,
and break down if any of the qi exceed J−1/2|2λbare|1/2. In this case the flux
associated with qi should simply be ignored.

6Note, however, that the radius of the shell in Fig. 1 represents not |2λbare|, but the
square root of |2λbare|. This is why one cannot recognize in Fig. 1 the need for the charges
qi to be incommensurate, a fact that is immediately clear from Eq. (2.21). It is also the
reason why increasing |λbare| has no beneficial effect in the case of J = 2. For fixed ∆λ,
the shell gets thinner as one increases its radius. If J = 2, this precisely compensates for
the increase of the shell radius, and the volume remains constant.

10

only in regions of small cosmological constant. In many respects our picture
resembles an idea of Banks [13]. Another example of a discretuum is the
irrational axion [14, 15]. While this work was being completed we learned
that Feng, March-Russell, Sethi, and Wilczek are also considering extensions
of the mechanism of Brown and Teitelboim.

2 Four-form quantization

2.1 Four-form energetics

We first review the basic physics of four-form field strengths. For antisym-
metric tensor fields, the language of forms is used when convenient; this is
indicated by bold face (F4). Normal fonts are used for index notation, or
when index notation is implied, e.g. F 2

4 = FµνρσF
µνρσ.

The action for gravity with a bare vacuum energy λbare plus four-form
kinetic term is

S =

∫
d4x

√−g
( 1

2κ2
4

R − λbare − Z

2 · 4!
F 2

4

)
+ Sbranes , (2.1)

where F4 = dA3. We include a general normalization constant Z in the
kinetic term for later convenience. Certain boundary terms must be added
to this action. They do not affect the equations of motion and will not be
prominent in the remainder of this paper. However, they are crucial for
the correct evaluation of the on-shell action when physical quantities are
measured on an equal time hypersurface Σ. The usual Gibbons-Hawking
term [16] is given by

SGH =
1

κ2
4

∫

Σ

d3x
√

hK . (2.2)

For the four-form field the following boundary term must be included to
obtain stationary action under variations that leave F fixed on the bound-
ary [17]:

SDJ =
Z

3!

∫
d4x ∂µ

(√−gF µνρλAνρλ

)
. (2.3)

On shell its value is negative twice the F 2 contribution in the volume term
of the action. This removes the apparent discrepancy [18] between the cos-
mological constant in the on-shell action and in the equations of motion.
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Ignoring the brane sources (we will consider them shortly), the four-form
equation of motion is ∂µ (

√−g F µνρσ) = 0, with solution

F µνρσ = cεµνρσ , (2.4)

where εµνρσ is the totally antisymmetric tensor and c is any constant. Thus
there is no local dynamics. One has F 2

4 = −24c2, and so the on-shell effect
of the four-form is indistinguishable from a cosmological constant term. The
Hamiltonian density is given by

λ = λbare − Z

48
F 2

4 = λbare +
Zc2

2
. (2.5)

Only λ is observable: λbare and the four-form cannot be observed sepa-
rately in the four-dimensional theory. Therefore, the bare cosmological con-
stant can be quite large. For example, it might be on the Planck scale or on
the supersymmetry breaking scale. In order to explain the observed value of
the cosmological constant, λbare must be very nearly cancelled by the four-
form contribution.

2.2 Four-form quantization

In the original work [5], and in many recent applications, it as assumed that
the constant c can take any real value, thus cancelling the bare cosmological
constant to arbitrary accuracy. However, we are asserting that the value of c
is quantized. Since this is somewhat counterintuitive, let us first discuss two
things that the reader might think we are saying, but are not.

First, if there is a gravitational instanton, a Euclidean four-manifold X,
then it is natural to expect that the integral of the Euclidean four-form over
X is quantized, ∫

X

F4 =
2πn

e
, n ∈ Z . (2.6)

This is the generalized Dirac quantization condition [19–22]. It arises from
considering the quantum mechanics of membranes, which are the natural
objects to couple to the potential A3,

S = e

∫

W

A3 (2.7)
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2.4 Multiple four-forms

General compactifications actually give rise to several four-form fluxes, and
this can solve the gap problem. Let there be J such fluxes, with

λ = λbare +
1

2

J∑

i=1

n2
i q

2
i . (2.21)

The question is whether there exists a set of ni such that

2|λbare| <
J∑

i=1

n2
i q

2
i < 2(|λbare| + ∆λ) , (2.22)

where ∆λ corresponds to the observational bound, roughly 10−120 in Planck
units. This can be visualized in terms of a J-dimensional grid of points,
spaced by qi and labeled by ni (see Fig. 1). Consider a sphere of radius

r = |2λbare|1/2 centered at ni = 0. If one of the points (n1, n2, . . . , nJ) is
sufficiently close to the sphere, the field configuration corresponding to this
point will lead to an acceptable value of the cosmological constant.

More precisely, one should think of a thin shell, whose width encodes the
width of the observational range,

∆r = |2λbare|−1/2∆λ . (2.23)

We need at least one point to lie within the shell. As we will discuss, there
may be large degeneracies — let the typical degeneracy be D. The volume
per D grid points must then be less than the volume of the shell, ωJ−1r

J−1∆r,
where the area of a unit sphere is ωJ−1 = 2πJ/2/Γ(J/2). Thus

J∏

i=1

qi ! ωJ−1

D
|2λbare|

J
2
−1∆λ , (2.24)

or
D

ωJ−1

J∏

i=1

qi

|2λbare|
1
2

! ∆λ

|2λbare|
. (2.25)

In other words, the typical spacing of the spectrum of the cosmological con-
stant in a model with given J , ei, and λbare will be given by

∆λmin =
D

∏J
i=1 qi

ωJ−1|2λbare|
J
2

−1
. (2.26)
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Pressing Question

I Why nature picks such a very small positive Λ ?
I Stringy Mechanism :

I Probability distribution
I Stringy dynamics

I Type IIB :
I Model with a single Kähler modulus
I Rummel-Westphal model

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 7/32
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Single Modulus Model

I Consider the superpotential

W = W0 − Ae−x

where W0 and A are parameters and x is a Kähler modulus.

I A stable vacuum can exist at x = xm

Λ ' BW0A(xm − x0) (1)

where B is a constant.

I Let us treat W0 ≥ 0 and A ≥ 0 as random parameters.

I Then what is the probability distribution of Λ ?

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 8/32



Introduction
A Stringy Mechanism

Multi-moduli at high scale

Single Modulus Model
Kähler Uplifting Scenario in the large volume approximation

Basic Idea

Let xj to have a uniform distribution f (xj) = 1 between 0 and 1.
What is the probability distribution P(z) of the product z = x1x2 ?

P(z) =

∫ 1

0
dx1

∫ 1

0
dx2 δ(x1x2 − z) =

∫ 1

z
dx1

1

x1
= ln

1

z

for 0 ≤ z ≤ 1

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 9/32
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Probability distribution of z = x1x2 and z = x1x2x3

-1.0 -0.5 0.0 0.5 1.0
z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PHzL
z=x1…xn, Uniform

P(z) =
1

2(n − 1)!

(
ln

1

|z |

)n−1

(2)
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Probability distribution of z = x1x2 and z = x1x2x3

-2 -1 0 1 2
z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PHzL
z=x1…xn, Normal

Figure: The product distribution P(z) is for z = x1 (solid brown curve for
normal distribution), z = x1x2 (red dashed curve), and z = x1x2x3 (blue dotted
curve), respectively. In general, the curves are given by the Meijer-G function.
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Probability distribution P(z) for z = xn1

-1.0 -0.5 0.0 0.5 1.0
z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PHzL
z=x1

n
, Uniform

P(z) ∼ z−1+1/n

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 12/32



Introduction
A Stringy Mechanism

Multi-moduli at high scale

Single Modulus Model
Kähler Uplifting Scenario in the large volume approximation

Probability distribution P(z) for z = x2
1 and z = x2

1x2

0.2 0.4 0.6 0.8 1.0
z

0.5

1.0

1.5

PHzL

z = x1 (solid horizontal line), z = x2
1 (red dashed curve), and

z = x2
1x2 (blue dotted curve)
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Cumulative distribution for z = x2
1 and z = x2

1x2
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Probability distribution P(z)

z Asymptote of P(z) at z = 0

x1 · · · xn (ln(1/|z |))n−1

xn1 z−1+1/n

xn1 · · · xnm z−1+1/n(ln(1/|z |))m−1

xm1 xn2 (z−1+1/m − z−1+1/n)/(m − n)

x1 · · · xm / y1 · · · yn (ln(1/|z |))m−1

xm1 /y
n
1 z−1+1/m

xn1
1 + · · ·+ xnmm z−1+1/n1+···1/nm

x1x2, 0 < c = x1/x2 <∞ smooth

x1x2, 0 ≤ c = x1/x2 or c ≤ ∞ ln(1/|z |)
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Model in IIB

V =e
K

M2
P

(
K I J̄DIWDJ̄W̄ −

3

M2
P

|W |2
)
,

K =− 2M2
P ln

(
V +

ξ̂

2

)
,

ξ̂ =− ζ(3)

4
√

2(2π)3g
3/2
s

χ(M) ∼ 8.57× 10−4 χ(M)

g
3/2
s

,

W =M3
P

(
W0 + A1e

−a1T1

)
.
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Rummel-Westphal Model

V

M4
P

∼a1A1e
−a1t1W0

2γ2
1t

2
1

+
3W 2

0 ξ̂

64
√

2γ3
1t

9/2

=− W0a
3
1A1

2γ2
1

(
2C

9x9/2
− e−x

x2

)
,

C ≡−27W0ξ̂a
3/2
1

64
√

2γ1A1

, x ≡ a1t1.

V ′ = 0, V ′′ ≥ 0

3.65 . C . 3.89, 2.50 ≤ x . 3.11.
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Λ

M4
P

∼e−5/2

9

(
2

5

)2 −W0a
3
1A1

γ2
1

(
x − 5

2

)
+ · · ·

=

√
10

45

−W0a
3
1A1

γ2
1

(
C − 225

√
10

16e5/2

)
+ · · · ,

C ≡−27W0ξ̂a
3/2
1

64
√

2γ1A1

∼
(

5

2

)5/2

e−5/2(x + 2) · · · .

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 19/32



Introduction
A Stringy Mechanism

Multi-moduli at high scale

Single Modulus Model
Kähler Uplifting Scenario in the large volume approximation

P(Λ)

0.2 0.4 0.6 0.8 1.0
L

1

2

3

4

5

PHLL

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 20/32



Introduction
A Stringy Mechanism

Multi-moduli at high scale

Single Modulus Model
Kähler Uplifting Scenario in the large volume approximation

Asymptote of P(Λ̂)

Model Random variables Asymptote

1 W0,A1 − ln Λ̂

2 W0,A1, ξ̂ − ln Λ̂

3 a1,W0,A1 Λ̂−4/9

4 1/ym ≤ a1 = 1/y1 ≤ 1,W0,A1 −y4
m ln Λ̂

Table: A summary of the properties in the constrained product distribution
P(Λ̂) for 4 plausible scenarios.

Λ̂ =
Λ

M4
P

∼ 10−7(2π/Nc)9/2
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What happens if the distributions of W0,A1 are peaked ?

P(y1) ∼ [ln(1/y1)]n1 and P(y2) ∼ [ln(1/y2)]n2 , then the probability
distribution of z = y1y2 ≥ 0 goes like, as z → 0,

P(z) ∼ [ln(1/z)]n1+n2+1

It is simple and probably natural to have W0 = A = 0, yielding
supersymmetric Minkowski solutions. So zeros for them should be
very likely. Other values are also possible, so we believe that their
probability distributions naturally peak at zero values.

The modulus mass :
m ∼

√
Λ̂MP > 1 Tev → Λ̂ > 10−30

Λ̂ ' BW0A(xm − x0)

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 22/32
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Non-interacting moduli

I Let us consider V (φi ) =
∑N

j=1 Vj(φj)

I Then Vmin(φi ) =
∑

j Vj ,min(φj). So if Vj has nj number of
minima, then there are Πnj number of classical minima. For
nj ∼ n, we have nN = eN ln n minima. This is implicit in BP.

I Roughly, Vj has 2nj extrema, half of which are minima. So
out of Π(2nj) extrema, we have Πnj number of minima.

I The probability for an extremum to be a minimum is
P = 1/2N = e−N ln 2.

I Still, there are P× number of extrema = eN ln n minima.

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 24/32
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Multi-moduli case

I We are interested in dS space solutions of string theory.

I However if the various φj interact with each other, it is very
hard to say how many minima there are.

I Typical V (φj) can be very complicated.

I The symmetric mass-squared matrix at an extremum of V ,
i.e., the Hessian H = Vij for Vi = 0, must be positive definite
for the extremum to be classically stable (meta-stable).

I If the Hessian is complicated, what is the probability that an
extremum is meta-stable ?

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 25/32
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General Case

I Consider the Hessian H = Vij for Vi = 0.

I H is positive definite if all eigenvalues are positive. By
Sylvester Criteria, this is true if all left-upper sub-matrices HJ

of H have det HJ > 0, for J = 1, 2, ...,N. (So there are N
conditions.)

I If the Hessian is large and complicated, what is the probability
that an extremum is meta-stable ?

I This problem was first studied by Aazami and Easther
(0512050). More recently by Chen, Shiu, Sumitomo and me
(also Marsh, McAllister and Wrase.)
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I The tool to study a large complicated H is random matrix
theory : Wigner, Tracy-Widom, Dean-Majumdar etc.

I Given a random H that typically has negative eigenvalues, the
theory of fluctuation of extreme eigenvalues allows one to
compute the probability of drawing a positive-definite matrix
from the ensemble.

I The key phenomenon is eigenvalue repulsion: a large
fluctuation through which all eigenvalues becomes
positive-definite generally requires an increase in the local
eigenvalue density, which is statistically costly.

I So P for no negative eigenvalue is Gaussianly suppressed.
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Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-

ble with N = Q (right panel), from 103 trials with N = 200.

As a Wishart matrix is the Hermitian square of another matrix, it is necessarily positive

semidefinite. The joint probability density of a complex Wishart matrix is (cf. e.g. [10])

f(�1, . . . ,�N) = C exp
�
� 1

�

N�

i=1

�i + 2
N�

i<j

ln|�i � �j| + (Q � N)
N�

i

ln�i

�
. (3.6)

In the Coulomb gas picture, the non-negativity of a Wishart matrix corresponds to the presence

of a hard wall at � = 0.

The eigenvalue distribution in the Wishart ensemble is given by the Marčenko-Pastur law

[19], which takes the form

�(�) =
1

2�N�2�

�
(4N�2 � �)� , (3.7)

for the special case N = Q that will be relevant in our analysis, cf. Figure 1.

The probability density function of the smallest eigenvalue �1 was first computed by Edel-

man [18], and for our purposes it su�ces to note that for N = Q and � = 1�
N

, its average

position ��1� scales as 1
N2 .

3.1.3 The Altland-Zirnbauer CI ensemble

The matrix M appearing in the critical point equation (2.4) has an eigenvalue spectrum that

is broadly reminiscent of the Wigner semicircle law, but the 2N eigenvalues of M come in

opposite-sign pairs ±�a, with 0 � �1 � . . . � �N . As observed in [2], matrices M of the form

(2.5) belong to the Altland-Zirnbauer CI ensemble [20]. For normally-distributed entries of M,

the joint probability density of the eigenvalues is

f(�1, . . . ,�N) = C exp
�
� 1

�2

N�

i=1

�2
i +

N�

i �=j

ln|�2
i � �2

j | +
N�

i=1

ln |�i|
�

. (3.8)
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3.1.1 The Wigner ensemble

One of the simplest and best-known ensembles of random matrices is the Wigner ensemble of

Hermitian matrices, also referred to as the Gaussian Unitary Ensemble [12, 13, 14]. Elements

of this ensemble, which we refer to as Wigner matrices, are N ⇥N Hermitian matrices M given

by

M = A + A† , (3.1)

where Aij for i, j = 1, . . . , N are i.i.d. variables drawn from �(0, �), and the dagger denotes

Hermitian conjugation.

The measure on the space of matrices is

dP (M) =
�

1�i�j�N

f(Mij) dMij , (3.2)

where f(Mij) denotes the probability density of observing Mij. For normally-distributed entries

of M , the joint probability density of the eigenvalues �1, . . . ,�N is obtained by a unitary change

of coordinates,

f(�1, . . . ,�N) = C exp
�
� 1

�2

N�

i=1

�2
i + 2

N�

i<j

ln|�i � �j|
�

, (3.3)

where C is an N -dependent normalization constant. As conceived in the famous work of Dyson

[15, 16], this joint probability density can be given a physical interpretation in terms of a

one-dimensional Coulomb gas of N charged particles executing Brownian motion under the

influences of a confining quadratic potential and of mutual electrostatic repulsion. This physical

picture has proved to be very fruitful in deriving exact results for a variety of properties of the

eigenvalue spectrum (see e.g. [4, 5]), and in §4 and §5 we will see that repulsion between pairs

of eigenvalues significantly impacts the stability of critical points in supergravity.

At large N , the eigenvalue spectrum of a Wigner matrix converges to the celebrated Wigner

semicircle law,

�(�) =
1

2�N�2

�
4N�2 � �2 . (3.4)

where � is the eigenvalue density. Setting � = 1�
N

, the eigenvalue spectrum has support in the

interval [�2, 2], cf. Figure 1.

3.1.2 The Wishart ensemble

The second class of random matrices we will need are complex Wishart matrices, which take

the form

M = AA† , (3.5)

where A is an N ⇥Q complex matrix with entries drawn from �(0, �), and Q � N . The study

of this ensemble dates back to Wishart’s investigation of sample covariance matrices [17], and

the universality evident in the Wishart ensemble provided some of the inspiration for Wigner’s

subsequent development of random matrix theory.
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Figure 1: The eigenvalue spectra for the Wigner ensemble (left panel), and the Wishart ensem-

ble with N = Q (right panel), from 103 trials with N = 200.
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Elements of A are independent identically 
distributed variables drawn from some 

statistical distribution.
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If the uplifting term 𝑉  dominates entire mass matrix, the 
probability of positive mass matrix goes as 

𝑀 ∼ 𝑀   
∈ Gaussian orthogonal ensemble (GOE) 

𝒫 = 0.938  𝑒 .    .     
          ∼ 𝑒    .  

(The last line is just for simplicity.) 

Gaussian suppression only remains super-tiny chance for stable dS. 

Note: a theoretical prediction for the coefficient   

At finite 𝑁, the maximum eigenvalue 
fluctuates around the edge of Wigner 
semi-circle.  

The prefactor ∼ 0.275 is obtained 

[Dean, Majumdar, 06] 

We are interested in the tail that extends pass zero.

Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 29/32



Introduction
A Stringy Mechanism

Multi-moduli at high scale

Random Matrix
New Picture

I Here is an improved version on what they found : for N
number of moduli,

P ∼ e−
ln 3

4
(N+0.7)2

where ln(3)/4 = 0.275 is obtained analytically by Dean and
Majumdar (cond-mat 0609651).

I The number of extrema probably goes like ecN(recall 10500)
so if the probability is Gaussianly suppressed, then there is
little chance we’ll have a meta-stable dS minimum when the
number of moduli is large.
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Summary

I At high vacuum energies, no stable vacua

I At lower energies, heavy stabilized moduli may be frozen

I At low energies, stable vacua begin to survive
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1 

CC = 0 

Before After Stabilization: 

[Bousso, Polchinski, 00] [Sumitomo, Tye] Yoske Sumitomo and Henry Tye A Stringy Mechanism for a Small Λ 32/32
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