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Introduction

Measuring the masses of new particles may be a bit tricky at the LHC.

Stability of the DM
Symmetry

• Pair production

• At least two missing (DM) 
particles in the final state.

(e.g. R-parity in SUSY)

�

94 

Large cross section via strong interaction 

Easy discovery M~1TeV within 1 month ? 

€ 

€ 

˜ q ̃  q ,  ˜ q ̃  g ,  ˜ g ̃  g 

€ 

σ ≈ 3pb for m(˜ q , ˜ g ) =1 TeV

⇒  100 events/day@1033cm−2s−1

SUSY Scale 

ŇŅł accuracyŃL=10fb-1, mSUGRAń 

Missing ET is important Ńcalibrate with Z→ll+jets) 

€ 

MSUSY = min(m( ˜ q ),m( ˜ g ))

Missing ET + high pt jets + Leptons 
(Model indep. Analysis, R-parity conserv.) 

€ 

Meff = ET

miss
+ pT

jet∑

Signal 

€ 

M
SUSY

·�´��¯×ÆÓØÔÓ����	��, ²Ú×�½ÍÞØ�·�ÉÎ×ÊÈÙ�C4(2002)N1 
2008.7.22 

Simple mass reconstruction (e.g. 
like Z→μμ) is not possible. 

M2
NP = (p1 + p2 + · · · + pDM )2

can‘t be measured
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 6: The O1 distributions whose endpoints are described in table 4: (a) the l+l⇥

edge, (b) the l+l⇥q edge, (c1) the l±q high-edge (c2) the l±q low-edge, (d) the l+l⇥q

threshold and (e) the Zq edge. Plots were produced with the cuts described in table 3.4.1.

The number of events corresponds to 100 fb⇥1 of high luminosity running.

to obtain an estimate of the accuracy with which these observables may be measured.
It is expected that the errors on all of the observables considered here will eventually

be statistics dominated, so simple fits have been made to the data to obtain estimates
of the statistical errors on the edge or end point locations. The shapes fitted to the

data (see figure 7) and the algorithms for determining the boundaries of the fitted
regions have been kept as simple and generic as possible, with the intention of making
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Figure 2: Combined exclusion limits for simplified SUSY models with m(χ̃01) = 0 (left) and MSUGRA/CMSSM models with tan β = 10, A0 = 0 and µ > 0 (right).
The combined limits are obtained by using the signal region which generates the best expected limit at each point in the parameter plane. The dashed-blue line
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should be noted that some of these limits were generated with different models or parameter choices (see legends). The previous published ATLAS limits from this
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Slepton pair production

• Unlike squarks, the constraint on the slepton mass is weak: ml̃ > 100 GeV�

• Observed anomaly in the muon (g-2): light slepton is preferred! 
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How to extract the masses of the slepton 
and the neutralino from this event ?
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• The kink is very fragile against the BG
and the momentum mismeasurement.

• XT cannot be very large.  
( most of the ISR is soft and collinear ) 

• Small event population at the kink point



How to improve?
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parton momenta are unknown

LHC:  inelastic scattering
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How to improve?

• taking account of more information:
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Central Exclusive Production (CEP) 
and forward proton tagging

pµ
miss = pµ

initial � pµ
final:visible

l̃+

l̃�
�

�

p+ p+

p+p+

CEP forward proton tagging

collision point
very forward 

detectors
forward CAL 

220m
420m

• The proton-proton collisions may create slepton pairs 
through the two photons, without breaking the protons down.

• Very clean final state:  2 sleptons + 2 protons remained intact, 
no soft particles in the forward CAL.

• Provided the very forward detectors installed at 220m and 
420m away from the collision point (ATLAS forward physics 
(AFP) project), the energy of the final state protons can be 
measured with a good accuracy (a few % relative energy 
resolution).
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Figure 1: Cross sections for pair production of spin–1 (V +V −), spin–1/2 (F+F−) and spin–0
(S+S−) charged particles in central exclusive two–photon production as a function of the particle
mass (mtrue) at the 14 TeV LHC, calculated using the PhoCEP Monte Carlo event generator.

half the missing energy (Emiss). An additional advantage is the relative ease in constructing
likelihood functions from mmax

l̃
and mmax

χ̃ , which could be particularly useful given a small data
sample, as is likely the case in light of the small two–photon production cross section.

The main aim of this paper is to study how well the slepton and neutralino masses may be
determined using mmax

l̃
and mmax

χ̃ computed in each event. These masses can also be estimated
from mγγ and Emiss [33, 34], which have threshold values at 2mtrue

l̃
and 2mtrue

χ̃ respectively. We
shall compare the two methods and illustrate the improvements that can be made by making
use of the mass–shell constraints. The potential for measuring properties of the SM Higgs
boson [35, 36], long–lived gluinos [37], stops [38], MSSM Higgs [38, 39], NMSSM Higgs [40] and
other BSM Higgs scenarios [41, 42] in the central exclusive mode with tagged forward protons
have also been discussed in the literature.

Note that the decay chain considered can be applied to new physics models with different
particle spins, for example the pair production of charged spin–1/2 fermions followed by the
decay into neutral spin–1 bosons, as might be expected from a KK model. In fact, it can be
shown that, given the same masses and charges, the production cross section for spin–0 bosons
is the smallest when compared with spin–1/2 fermions and spin–1 bosons, see Fig. 1. In this
paper, we shall concentrate on the first case, which is the most conservative, and use the SUSY
decay chain in Eq. (5) as our working example.

The paper is organised as follows. In Section 2, we present the analytic solutions consistent
with the 4–momenta measurable in Eq. (5), and derive the quantities mmax

l̃
and mmax

χ̃ . We then
present the numerical results in Section 3, and compare between the performance of (mmax

l̃
,mmax

χ̃ )
and (mγγ, Emiss) in determining (mtrue

l̃
,mtrue

χ̃ ), after including the CEP dynamics simulated by
a new event generator PhoCEP[43]. This is followed by an estimate of (mtrue

l̃
,mtrue

χ̃ ) using the
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• The cross section can be calculated by using the “equivalent photon approx”.
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• The cross section can be calculated by using the “equivalent photon approx”.

W+W�

• The VFDs can only measure the final state 
protons with:  

0.0015 <
Eini

p � Efinal
p

Eini
p

< 0.15

W+W� � l+l���̄

l̃+ l̃� (ml̃ = 150 GeV)

1.00 fb

0.15 fb

• The cross sections after the proton tagging 
acceptance:
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(Λ1 + Λ2 − 2) ,

cc =
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4
(Λγγ − 2Λ1Λ2) . (17)

Note that in Eq. (15), ca, cb, cc and ΛP are constructed from directly measureable 4–momenta.
A mass hypothesis (ml̃,mχ̃) is consistent with the measured 4–momenta if it results in a positive
d2, in which case a two–fold degenerate solution for (pχ̃1

, pχ̃2
, pl̃1 , pl̃2) corresponding to ±|d| is

obtained.
The boundary of consistent solutions on the (ml̃,mχ̃) plane is given by Eq. (15) by setting

d = 0. To see this, note that since P is space–like, ΛP < 0. This means that for a given Λ∆, Λχ̃

decreases as d2 increases. An upper boundary on the (∆m2

l̃χ̃
,m2

χ̃) plane therefore has d2 = 0.
The consistent region is bounded from above by this quadratic curve, and below by the x–axis,
i.e. m2

χ̃ = 0, which can be transformed into a boundary in the (ml̃,mχ̃) plane. Within the
boundary, d2 > 0. By construction, the solutions are time–like.

More observations on the properties of the consistent solutions can be made. First, the sign
of the energy component of the two solutions (for ±|d|) must be the same, since it is always
possible to boost to a frame where the energy component of the space–like vector P is zero,
in which case the two solutions have the same energies. Second, since the consistent solutions
are continuous functions of mχ̃ and ml̃, it follows that the energies of all consistent solutions
must have the same sign. The energies must then be positive, due to the fact that the true
masses must be a consistent solution, and hence lies within the boundary. Third, the solution
is clearly symmetric when exchanging Λ1 and Λ2. This means that the boundary obtained for
the mass–shell conditions for pχ̃1

and pχ̃2
must be the same, consistent with the fact that both

constraints lead to Eq. (15).
As discussed in Section 1, the consistent mass region may be characterised by the maximum

values of mχ̃ and ml̃, i.e. m
max
χ̃ and mmax

l̃
. They correspond to the stationary values of Λχ̃ and

Λl̃ as functions of Λ∆ in Eq. (15). The results are

(mmax
χ̃ )2 = (pl1 · pl2)×

(

cc −
c2b
4ca

)

,

(mmax

l̃
)2 = (pl1 · pl2)×

(

cc −
(cb + 1)2

4ca

)

. (18)

By construction, mmax
χ̃ and mmax

l̃
are bounded from below by the true mχ̃ and ml̃ respectively.

So far we have shown that analytic boundaries containing mass hypotheses consistent with
the measured 4–momenta can be obtained on an event–by–event basis. In the next section, we
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cc =

with mass–shell conditions

m2
χ̃1

=
1

4
(1− a)2m2

γγ + d2P 2

−
1

2
(1− a)(b+ 1)pγγ · pl1 +

1

2
(1− a)(c− 1)pγγ · pl2 −

1

2
(b+ 1)(c− 1)pl1 · pl2 ,

m2
χ̃2

=
1

4
(1 + a)2m2

γγ + d2P 2

+
1

2
(1 + a)(b− 1)pγγ · pl1 −

1

2
(1 + a)(c+ 1)pγγ · pl2 −

1

2
(b− 1)(c+ 1)pl1 · pl2 ,

m2

l̃1
=

1

4
(1− a)2m2

γγ + d2P 2

−
1

2
(1− a)(b− 1)pγγ · pl1 +

1

2
(1− a)(c− 1)pγγ · pl2 −

1

2
(b− 1)(c− 1)pl1 · pl2 ,

m2

l̃2
=

1

4
(1 + a)2m2

γγ + d2P 2

+
1

2
(1 + a)(b− 1)pγγ · pl1 −

1

2
(1 + a)(c− 1)pγγ · pl2 −

1

2
(b− 1)(c− 1)pl1 · pl2 , (11)

where the parameters a, b, c and d are to be determined. For simplicity, we have neglected the
lepton mass ml throughout, although we note that consistent solution regions can also readily
be defined for general mass values.

Here mχ̃ and ml̃ need not be the true masses, but input parameters consistent with a positive
d2. The structure of the system is such that upon subtracting the different expressions in Eq. (11),
the additive d2P 2 term and the terms bilinear or quadratic in (a, b, c) drop out. This leads to
three equations linear in (a, b, c). Defining the quantities

Λ∆ ≡
∆m2

l̃χ̃

pl1 · pl2
, Λ1 ≡

pγγ · pl1
pl1 · pl2

, Λ2 ≡
pγγ · pl2
pl1 · pl2

, Λγγ ≡
m2

γγ

pl1 · pl2
, (12)

where

∆m2

l̃χ̃
≡ m2

l̃
−m2

χ̃ , (13)

the solutions for the parameters (a, b, c) are given by

a = Λ∆

(Λ2 − Λ1)

Λγγ − 2Λ1Λ2

,

b = 1− Λ2 + Λ∆

Λγγ − Λ2(Λ1 + Λ2)

Λγγ − 2Λ1Λ2

,

c = 1− Λ1 + Λ∆

Λγγ − Λ1(Λ1 + Λ2)

Λγγ − 2Λ1Λ2

. (14)

Inserting Eq. (14) into Eq. (11), all four mass constraints give

Λχ̃ = caΛ
2
∆ + cbΛ∆ + cc + d2ΛP , (15)
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Finding the allowed mass region
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moreover the upper bound on mχ is also obtained.
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Note that in Eq. (15), ca, cb, cc and ΛP are constructed from directly measureable 4–momenta.
A mass hypothesis (ml̃,mχ̃) is consistent with the measured 4–momenta if it results in a positive
d2, in which case a two–fold degenerate solution for (pχ̃1

, pχ̃2
, pl̃1 , pl̃2) corresponding to ±|d| is

obtained.
The boundary of consistent solutions on the (ml̃,mχ̃) plane is given by Eq. (15) by setting

d = 0. To see this, note that since P is space–like, ΛP < 0. This means that for a given Λ∆, Λχ̃

decreases as d2 increases. An upper boundary on the (∆m2

l̃χ̃
,m2

χ̃) plane therefore has d2 = 0.
The consistent region is bounded from above by this quadratic curve, and below by the x–axis,
i.e. m2

χ̃ = 0, which can be transformed into a boundary in the (ml̃,mχ̃) plane. Within the
boundary, d2 > 0. By construction, the solutions are time–like.

More observations on the properties of the consistent solutions can be made. First, the sign
of the energy component of the two solutions (for ±|d|) must be the same, since it is always
possible to boost to a frame where the energy component of the space–like vector P is zero,
in which case the two solutions have the same energies. Second, since the consistent solutions
are continuous functions of mχ̃ and ml̃, it follows that the energies of all consistent solutions
must have the same sign. The energies must then be positive, due to the fact that the true
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is clearly symmetric when exchanging Λ1 and Λ2. This means that the boundary obtained for
the mass–shell conditions for pχ̃1

and pχ̃2
must be the same, consistent with the fact that both

constraints lead to Eq. (15).
As discussed in Section 1, the consistent mass region may be characterised by the maximum

values of mχ̃ and ml̃, i.e. m
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χ̃ and mmax
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. They correspond to the stationary values of Λχ̃ and

Λl̃ as functions of Λ∆ in Eq. (15). The results are

(mmax
χ̃ )2 = (pl1 · pl2)×

(

cc −
c2b
4ca

)

,

(mmax

l̃
)2 = (pl1 · pl2)×

(

cc −
(cb + 1)2

4ca

)

. (18)

By construction, mmax
χ̃ and mmax

l̃
are bounded from below by the true mχ̃ and ml̃ respectively.

So far we have shown that analytic boundaries containing mass hypotheses consistent with
the measured 4–momenta can be obtained on an event–by–event basis. In the next section, we
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Figure 3: Scatter plots showing the (mmax

l̃
,mmax

χ̃ ) values consistent with each event. Left: SUSY
(mtrue

l̃
,mtrue

χ̃ ) = (150, 100) GeV. Right: SM. Each plot contains 10,000 events. No detector
smearing is included.

identification of the presence of a SUSY signal from the SM background could in principle be
achievable.

To show the enhancement obtained by utilising the additional kinematic information, in
particular in mass determination, we compare our results with an alternative method which
measures the end points of the missing energy (Emiss) and mγγ distributions [33]. The end point
values of these distributions are at 2mtrue

χ̃ and 2mtrue

l̃
respectively. These distributions take into

account the sum of longitudinal momenta and energy of the neutralinos that can be measured
in CEP with tagged forward protons, but do not include information from mass constraints.

In Fig. 4, we show the mmax
χ̃ and mmax

l̃
distributions. The Emiss and mγγ distributions are

displayed in Fig. 5. Compared to the mmax
χ̃ and mmax

l̃
distributions, the Emiss and mγγ distri-

butions are generally broader. This qualitative difference is due to the fact that both Emiss/2
and mmax

χ̃ (mγγ/2 and mmax

l̃
) are bounded from below by mtrue

χ̃ (mtrue

l̃
), while mmax

χ̃ (mmax

l̃
)

is in addition bounded from above by Emiss/2 (mγγ/2). To compare the difference between
these two methods over a range of masses, we show two additional SUSY models, specified by
(mtrue

l̃
,mtrue

χ̃ ) = (100, 50) GeV and (mtrue

l̃
,mtrue

χ̃ ) = (200, 100) GeV in addition to the ‘reference’
SUSY model and the SM background. We see that, compared with the (Emiss,mγγ) distribu-
tions, the (mmax

χ̃ ,mmax

l̃
) distributions benefit from a better signal–to–background ratio (S/B) in

the signal region, which improves as the mass scale increases. Here, the signal region for a distri-
bution is defined as the region above the lower threshold value determined by (mtrue

l̃
,mtrue

χ̃ ). For
example, for (mtrue

l̃
,mtrue

χ̃ ) = (150, 100) GeV, the S/B ratio in the signal region is approximately
1 for both mmax

l̃
and mmax

χ̃ distributions, while it is approximately 1/4 and 1/3 for the Emiss and
mγγ distributions respectively. Importantly, the distribution of the signal Emiss distributions
near the endpoint becomes increasingly smooth as the mass scale increases, leading to possibly
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Some variables
• The event-by-event upper bounds on the mslep and the mχ can be defined, 
respectively.

• By looking at the mslepmax and the mχmax simultanelously, the SMBG can be 
significantly removed. 



Numerical analysis

• The CEP events are generated by the PhoCEP program, which takes into 
account of the full spin correlation for production and subsequent decays.

• The lepton momentum cut, the detector acceptance and resolutions are taken account.
( |pTlep|>10GeV, |ηlep|<2.5,  Resolution: 10% for lepton, 4% for the tagged proton)

• (mslep, mχ) = (150, 100) GeV,  14TeV LHC with 300 fb-1 is assumed.  

• The 216 and 38 events are generated for the SMBG and SUSY signal, respectively
and used for the pseudo experiment.

• The signal window is defined by mslepmax= [130,230] and mχmax= [80,180]
reducing the events 216→24 (SMBG) and 38→36 (SUSY), respectively.

• The 2D probability density distributions of the (mslepmax, mχmax) are estimated by 
generating 106 events for various (msleptrue, mχtrue) assumptions and see which 
assumption can fit the (mslepmax, mχmax) distribution observed in the pseudo experiment 
the best.    



Result
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Figure 6: Credibility distribution for the (ml̃,mχ̃) hypothesis in a pseudo–experiment. The mass
parameters of the SUSY model are given by (mtrue

l̃
,mtrue

χ̃ ) = (150, 100) GeV. The solid black
and dashed red contours contain the 68% and 95% credibility regions respectively.

We show the p(m)∆ml̃∆mχ̃ distribution (∆ml̃ = ∆mχ̃ = 0.25GeV) from an event sample
from one pseudo–experiment in Fig. 6. In this particular sample, with 60 events (24 SM back-
ground, 36 SUSY signal) passing the selection criteria, (mtrue

l̃
,mtrue

χ̃ ) can be estimated to about
3–4 GeV accuracy at 95% credibility. Results from other event samples, which assume the same
integrated luminosity, show similar level of accuracies. By applying the likelihood calculation on
event samples which do not include finite detector resolution effects, we find that the uncertainty
is primarily due to statistical fluctuations.

As can be seen in Fig. 6, there is a preference towards the lower mass hypothesis. This is a
consequence of the peaking structure of the (mmax

l̃
,mmax

χ̃ ) distributions just above (mtrue

l̃
,mtrue

χ̃ ).
This implies that a hypothesis (ml̃,mχ̃) where ml̃ > mtrue

l̃
and mχ̃ > mtrue

χ̃ is likely to have
many signal events in the region where ρSUSY(mmax;m) is zero, and therefore they only ‘see’ the
likelihood contribution from fSMρSM(mmax

l̃
,mmax

χ̃ ), which is rather low. On the other hand the
likelihood reduces less quickly in the case where ml̃ < mtrue

l̃
and mχ̃ < mtrue

χ̃ due to the tail of
the mmax

l̃
and mmax

χ̃ distributions.

4 Summary and discussion

In this paper, we have discussed how the additional kinematic information obtained in CEP
with tagged forward protons can be used to simultaneously measure the masses of the particles
involved in the short decay chain displayed in Eq. (5). We presented a full solution to the system,
and found that the distributions of the quantities mmax

l̃
and mmax

χ̃ , which are the maximum mass
values consistent with a given event, are particularly useful in estimating their corresponding
true mass values mtrue

l̃
and mtrue

χ̃ . We then performed a likelihood analysis to show that for our
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1σ

2σ

• The expected accuracy of the mass determination is around 1.5 (2.5) GeV 
for 1(2) σ level for both the slepton and the neutralino. 

p(ml̃, m�̃)[25GeV]2



Summary
• By looking at the central exclusive slepton pair production with forward proton 
tagging, all the four components of the sum of the neutralino momenta can be 
deduced, allowing us to obtain analytically the allowed mass region by all the 
kinematic constraints. 

• Despite the poor statistics of CEP, the new technique for the mass determination 
is able to determine the masses of both the slepton and the neutralino a few GeV 
accuracy at 1 or 2 σ level. 

• This method may improve the 
traditional slepton, neutralino mass 
measurement at the ILC, because of 
making full use of the available 
kinematic constraints.
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FIG. 4. m̃max
N (blue/green), m̃max

X (red/black) and EY/Y ′ dis-
tributions for pair production of selectrons (mX = 150 GeV)
in MSSM, followed by decays into electrons and neutralinos
(mN = 100 GeV) at a 3 TeV e+e− collider. Simulations at
both parton level and those including QED radiation are dis-
played. No cuts and detector smearing effects are included.

cross section for the MSSM signal process is already an
order of magnitude larger than the SM background, it is
instructive to see that the two processes are cleanly sepa-
rated before applying additional selection cuts. Given the
simple mass dependence, we expect similar scatter plots
to be also useful in separating different NP processes.

Next we present the m̃max
N , m̃max

X and electron energy
EY/Y ′ distributions for the MSSM sample in Fig. 4. In
this particular sample, we see that at parton level there
is a statistical gain of a factor of 2 to 3 near the endpoint
of m̃max

N and m̃max
X over that of the EY/Y ′ distribution.

While the large difference between
√
s and m̃max results

in the long tails for the m̃max distributions, the tails fall
off sufficiently quickly and sharp edge structures remain
at mtrue. Note that the flat EY/Y ′ distribution is due to
the spin-0 nature of the selectrons, and different spin as-
signments can lead to different (endpoint) distributions.
Also, the small 4m2

X/s ratio means that Emin
Y/Y ′ is very

close to zero, so this endpoint might not be measured if
additional energy/momentum cuts were imposed.

When bremsstrahlung effects are included, all distribu-
tions are distorted. Now p/ cannot be fully determined,
in part due to initial state radiation down the beam pipe.
The p/ values needed for the more realistic distributions
in Fig. 4 are obtained from the momentum imbalance be-
tween the final state and the initial state e+e− systems,
assuming no bremsstrahlung effects for the latter. Initial
state radiation is calculable in perturbative QED, and its
effect on the parton m̃max distributions may be incorpo-
rated in a more sophisticated treatment, which is beyond
the scope of the present study. In our simple estimate,
the m̃max distributions still display sharp edge structures
around mtrue despite the radiation effects.

Next we turn to possible applications at the LHC. For
central exclusive production (CEP) processes (see Ref. [6]

and references therein for more details), for example two-
photon production of a pair of charged particles (X/X ′)

pp → p + γγ + p

γγ → X(±)X ′(∓) , (18)

followed by decays as depicted in Fig. 1, all four compo-
nents of p/ can be determined when the two final state
protons are measured, which could be achieved by in-
stalling proton tagging detectors far from the interaction
point [7]. In the first equation of Eq. (18), the ‘+’ signs
represent the presence of rapidity gaps. Contrary to e+e−

processes,
√
s is differerent for each CEP event. This

means that the EY/Y ′ endpoint method cannot be di-
rectly used, while the m̃max method can. The invariant
mass/energy of γγ and p/, which have lower endpoints
at 2mX and 2mN respectively, have been proposed to
measure mtrue in CEP [8]. Since m̃max takes the mass
shell constraints into account, they are expected to have
sharper distributions over the other variables. A com-
parison between these observables, and the precision on
mtrue that can be achieved at the LHC using m̃max will
be discussed in a separate article.

Finally, for inelastic processes at the LHC, only the
transverse components of p/, i.e. p/T , might be measured.
If only the short decay chain in Fig. 1 is observed, mea-
suringmtrue will be challenging. In principle,mtrue could
be measured from the kink structure of mmax

T2 (m̃N ) [9–
11]. However, the kink resides at the tail of themT2(m̃N )
distribution and so an accurate measurement will be dif-
ficult. In this case, the mass measurement in CEP could
be crucial. It was shown in Ref. [12] that mT2(m̃N ) is
a boundary of the mass region consistent with the mass
shell constraints. We have checked numerically that this
corresponds to m̃min

X (m̃N ) over all physical p/ configura-
tions, given p/T . How solutions other than m̃min

X (m̃N )
can be utilised (as discriminating variables), and extend-
ing the methods presented to other event topologies are
subjects of on-going studies.
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