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A New Way to Physics Beyond 
the Standard Model 

The method is based on properties of the BFKL Gluon Density 
Outline:
     In contrast to DGLAP, BFKL describes the gluon system as a
     bound state;  properties of bound states are very sensitive to
     BSM effects
     
     Application to HERA data, F2

     determination of the SuperSym scale from HERA data; 10 TeV

     Future application to LHC data:  DY processes
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The dynamics of Gluon Density at low x is determined by the 
amplitude for the scattering of a gluon on a gluon, described by 
the BFKL equation

which can be solved in terms of the 
eigenfunctions of the kernel 

∫
dk′ 2K(k,k′)fω(k′) = ωfω(k)

∂

∂ ln s
A(s,k,k′) = δ(k2 − k′ 2) +

∫
dq2K(k,q)A(s,q,k′)

in LO, with 
fixed αs            

fω(k) =
(
k2

)iν−1/2 ;
ω = αsχ0(ν)

prevailing intuition (based on DGLAP) - 
gluon are a gas of particles
BFKL leads to a richer structure   -  
basic feature: oscillations
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Quasi-locality 

K(k,k′) =
1

kk′

∞∑

n=0

cnδ(n)
(
ln(k2/k′ 2)

)

cn =
∫ ∞

0
dk′ 2K(k,k′)

k

k′
1
n!

(
ln(k2/k′ 2)

)n

k

∫
dk′ 2K(k,k′)fω(k′) =

∞∑

n=0

cn

(
d

d ln(k2)

)n

f̄ω(k) = ωf̄ω(k)

k

∫
dk′ 2K(k,k′)fω(k′) = χ

(
−i

d

d ln k2
, αs(k2)

)
f̄ω(k) = ωf̄ω(k)

Similarity to the Schroedinger equation  

Properties of the BFKL Kernel

Characteristic function 
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with running αs, BFKL frequency ν  becomes k-dependent, ν(k)

ν has to become a function of k because ω  is a constant
GS resummation applied
evaluation in diffusion (ν ≈ 0) or semiclassical approximation (ν > 0)

For sufficiently large k,  there is no longer a real solution for ν. 
The transition from real to imaginary ν(k) singles out a special value of    

                      k =kcrit, with ν(kcrit)=0.  
The solutions below and above this critical momentum kcrit have to 
match. This fixes the phase of ef’s.

αs(k2)χ0(ν(k)) + α2
s(k

2)χ1(ν(k)) = ω NLO 
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Near k=kcrit, the BFKL eq. becomes the Airy eq. which is solved 
by the Airy eigenfunctions (to a very good approximation) 

with

for k<<kcrit the Airy function has the asymptotic behaviour 

The two fixed phases at k=kcrit and at k=k0 (near ΛQCD) 
lead to the quantization condition

k fω(k) = f̄ω(k) = Ai
(
−(

3
2
φω(k))

2
3

)

φω(k) = 2
∫ kcrit

k

d k′

k′ |νω(k′)|

k fω(k) ∼ sin
(
φω(k) +

π

4

)

φω(k0) =
(

n− 1
4

)
π + η π

fω(k) =
(
k2

)iν−1/2 ;

instead of

6



Discrete Pomeron 
Solution of the 

BFKL eq
 

The first eight 
eigenfunctions
determined at  

η=0

kcrit ≃c exp(4n)
c  ≃ ΛQCD

⇓ kcrit

⇓ kcrit

Supersym. threshold
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Similarity with the 
Schroedinder eq.

for the potential well
Feynman Lecture III

BFKL eq is similar to S. eq 
for the potential well with

dynamically increasing 
width 

ω ≈ 0.5
1 + n

analogy 
worked out 

with 
J.Bartels 

potential 
well V

curvature is 
proportional to 

(V-E) 
if V is modified 
at some x then 
the whole wf is 

changed

d2a(x)
dx2

=
2m

h
[V − E]a(x)
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The frequencies ν(k)

with SuSy
at 10 TeV  

SM  

for gluinos 

for squarks 

 Kotikov, Lipatov 2003 
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SM SM+SUSY 

HERA 
region

LHC 
region
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The theorem states that massive particles decouple from the finite 
quantities calculated at energy scales below their masses.

With fixed αs, the “potential box” would have an infinite size.

The contribution to the phase 

coming from the integration over k > MSuSy would not alter the 
phases for k < MSuSy and could be fully compensated, in analogy to 
the absorption of large logarithms arising in the renormalization of 
the parameters of a theory from massive particles inside loops. In 
such cases massive SuSy particles effectively decouple.
 

Some remarks about the decoupling theorem

φω(k) = 2
∫ k

MSUSY

ν(k)dk′/k′
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When αs  is running, the “potential box” has to have a finite size. 
Therefore, the contribution to the phase coming from the 
integration over k > MSuSy has to alter the phases for k < MSuSy 
because we have now two fixed points, η(kcrit) and η(k0), which are 
fixed by the perturbative and non-perturbative QCD respectively

A rough estimate of the phase difference due to SuSy shows that 
it is not a small number (in any approximation, LO, NLO...)   

Some remarks about the decoupling theorem

ln(kcrit) ↗ n,       ω ↘ 1/n   
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Comparison with HERA data

Discreet Pomeron Green function

Integrate with the photon and 
proton impact factors

A(k,k′) =
∑

m,n

fm(k)N−1
mnfn(k′)

( s

kk′

)ωn

.

A(U)
n ≡

∫ 1

x

dξ

ξ

∫
dk

k
ΦDIS(Q2, k, ξ)

(
ξk

x

)ωn

fn(k)

A(D)
m ≡

∫
dk′

k′ Φp(k′)
(

1
k′

)ωm

fm(k′).

F2(x, Q2) =
∑

m,n

A(U)
n N−1

nmA(D)
m
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Proton impact factor

The fit is not sensitive to the particular form of the impact factor. 
The support of the proton impact factor is much smaller than the 
oscillation period of fn  and because the frequencies ν have a limited 
range

➤  many eigenfunctions have to contribute and η has to be a 
function of n.  Phase condition at      (close to ΛQCD) 

Φp(k) = A k2e−bk2

η = η0

(
n− 1

nmax − 1

)κ

the infrared boundary condition

additional parameter     which should be in the perturbative 
region but close to ΛQCD 
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Fits to F2 ,  Q2 > 8 GeV2,   x > 0.01  Ndf =103,   (two loop αs)

Note: we are partially absorbing the SUSY effects into the
 free parameters of the boundary conditions: e.g best SuSy fit with 

 η0, κ of SM gives χ2=572

 χ2/Ndf = 
110/103=1.06

15



16



The rate of rise λ 
F2 ~ (1/x)λ

The first successful pure BFKL description of the λ plot.

 For many years it was claimed that BFKL analysis was not applicable to 
HERA data because of the observed substantial variation of λ with Q2

Q2 (GeV2)
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The qualities of fits for various numbers of 
eigenfunctions, Q2 > 4 GeV2 (one loop αs)

➤ new data are crucial for finding the right solution 
 the differences in the fit qualities would be negligible if the 

errors where more than 2-times larger 
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Discrete BFKL-Pomeron  

Why so many eigenfunctions?
 
the contribution of large n ef’s is only weakly suppressed,
enhancement by (1/x)ω is not very large because 
 ω1 ≈ 0.25,  ω5  ≈ 0.1,   ω10 ≈ 0.05    

suppression of large n contribution only by the normalization 
condition  ~ 1/√n 
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Drell-Yan processes at LHC  

Additional requirement: add valence quarks contribution,
i.e; gluon and sea-quark contribution like in DPS and valence 
quarks like in DGLAP
       
investigation is in progress: 

Dominant process at LHC
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Conclusions  

The shape of the discrete BFKL states of the gluon density is very 
sensitive to BSM effects, The analysis of HERA data provides 
evidence for a SuSy scale at 10 TeV. 

LHC Drell-Yan data should substantially improve the sensitivity to 
BSM effects 

the evaluation depends on the infrared boundary condition (ibc), 
the understanding of ibc can be improved:
       by analyzing different physics reactions, 
                e.g.: F2 together with LHC Drell-Yan reactions
       by involving more sophisticated theoretical methods

ultimate goal: understanding of higher symmetry effects up to
                Planck scale    
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Back up slides
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BFKL eq., with fixed αs, predicts F2 ~ (1/x)ω  
with ω ~ constant with Q2,    ω  ~ 0.5 in LO and ω ~ 0.3 in NLO
Therefore, the prevailing opinion was that the BFKL analysis is not 
applicable to HERA data.

First hints that 
in BFKL λ can 
be substantially 
varying with Q2   
was given in PL 
668 (2008) 51 
by EKR

The rate of rise λ 
F2 ~ (1/x)λ

Lipatov 86 & EKR 2008: BFKL solutions with the running αs are 
substantially different from solutions with the fixed αs.
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semiclassical approximation 

k

∫
dk′ 2K(k,k′)fω(k′) = χ

(
−i

d

d ln k2
, αs(k2)

)
f̄ω(k) = ωf̄ω(k)

(
d

d ln(k)

)r

f̄ω(k) ≈ f̄ω(k)
(

d ln f̄ω(k)
d ln k

)r

χ

(
−i

d ln f̄ω(k)
d ln k2

, αs(k2)
)

= ω

df̄ω(k)
d ln(k2)

= iνω(αs(k2))f̄ω(k) DGLAP 
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K(k,k′) =
1

kk′

∞∑

n=0

cnδ(n)
(
ln(k2/k′ 2)

)
,

Quasi-locality of the kernel 

and of the Green function

Green function integrated with ΦP(k’)

no large k gluons
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Pomeron Regge trajectories 
in ADS  

hard wall glueballsrunning coupling Text

27



28


