# CMS pixel resolution study in the DESY test beam telescope

Daniel Pitzl, Alexey Petrukhin, Hanno Perrey, Armin Burgmeier, Luigi Calligaris, Thomas Eichhorn Pixel upgrade, 3.1.2012



- alignment
- tilted pixels
- charge sharing
- resolution

# **Telescope point resolution**



# **CMS pixel alignment w.r.t. telescope**

- shift in x and y based on peak of residuals: cmssxa, cmsdya
- rotate by  $\phi$  around z based on  $\Delta y$  vs x: cmsdyvsx
- adjust tilt angle  $\alpha$  based on  $\Delta y$  vs y: cmsdyvsy
- adjust z shift based on  $\Delta y$  vs  $\theta_{y}$ : cmsdyvsty
- to be automated:
  - include into telescope MillePede alignment, or
  - part of the general broken line track refit



#### rotate pixel around z



D. Pitzl (DESY): Pixel resolution in the test beam

#### adjust tilt angle



D. Pitzl (DESY): Pixel resolution in the test beam

#### adjust z shift

z position of CMS pixel w.r.t. telescope plane 2



D. Pitzl (DESY): Pixel resolution in the test beam

# **CMS pixel row resolution**

run 2322, 6 GeV, 20° tilt





- Vertical = rows
  - CMS pixel =  $100 \mu m$ .
- Residual:
  - σ = 9 µm,
  - telescope extrapolation:
     4.5 µm,
  - CMS resolution: 8 μm.

# **CMS pixel residual distribution**

run 2322, 6 GeV, 20° tilt



- cleaning cuts:
  - cluster one pixel away from edges and dead columns,
  - ► | Δx | < 0.15 mm,</p>
  - only 1- and 2-row
     clusters (against δ-rays)
  - cluster charge > 18 ke (against wrong timing),
  - | track angle | < 2 mrad (against scattering).
- **Result**:
  - less tails, more Gaussian

# Fitting peaks with Student's $t = (x-x_0)/\sigma = normalized residual.$

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi} \,\Gamma(\nu/2)} (1 + t^2/\nu)^{-(\nu+1)/2}$$

f(t) is a normalized
probability density.
Γ function is in PAW, ROOT.



# rms/σ for Student's t



 Generate random numbers according to Student's t for different v (see W. Hoermann, Computing 81 (2007) 317).

- calculate rms:
  - for all t. (rms diverges for ν = 1).
  - for |t| < 5. (rms stays below 1.62 for all  $\nu \ge 1$ ).
- Asymptotic value (rms/ $\sigma$  = 1) slowly approached.

 $RMS/\sigma$ 

# **Tilted CMS pixel in the EuTelescope**

CMS

pixel

common scintillator trigger

> up to 30° tilt

6 GeV

### cluster size vs tilt angle



D. Pitzl (DESY): Pixel resolution in the test beam

DESY Pixel Upgrade, 3.1.2012

#### cluster size vs impact point and tilt angle



D. Pitzl (DESY): Pixel resolution in the test beam

# charge sharing: $\eta$



$$\eta = (A_1 - A_2) / (A_1 + A_2)$$

1-row clusters have  $\eta = 1$ .

ideal: linear η vs y (saw tooth)

deviations: diffusion thresholds trapping delta-rays

#### charge sharing vs tilt angle



#### $y_{impact} \mbox{ mod } 200 \ \mbox{ } \mum$ : 2 pixels



D. Pitzl (DESY): Pixel resolution in the test beam

<eta>

15

#### resolution profile vs tilt angle



D. Pitzl (DESY): Pixel resolution in the test beam

### **CMS pixel resolution vs tilt angle**



D. Pitzl (DESY): Pixel resolution in the test beam

#### DESY Pixel Upgrade, 3.1.2012

#### **CMS pixel row resolution vs tilt angle**





- 6 GeV, telescope extrapolation uncertainty subtracted.
- row pixels =  $100 \ \mu m$ .
- Binary:
  - $\sigma = 100 / \sqrt{12} = 29 \,\mu m$
- Optimal angle 19°:
  - σ = 8 µm.

# **Summary**

- CMS pixel sensor aligned in the EUDET beam telescope.
- CMS pixel resolution measured as function of tilt angle:
  - Optimal resolution 8 µm at 20°,
  - charge sharing appears almost linear at 20°,
  - can we improve on the simple center-of-gravity cluster algorithm?
  - CMS uses template matching.
- Expect further improvements from the new ROC:
  - Iower threshold
  - less 1-row clusters
  - even better resolution

# **CMS Pixel with EuTelescope**

CMS

pixel

**PSI test** 

board

common scintillator trigger

> test beam 21: 2-6 GeV positrons

sliding telescope support

tilting support

-1

# Mimosa26 ILC pixel chip



- Mimosa26 monolithic active pixel sensors (Strasburg, 2009):
- thinned to 50 μm,
- $18.4 \times 18.4 \ \mu m^2$  pixel size,
- $1152 \times 576 = 663$ k pixels,
- $10.6 \times 21.2 \text{ mm}^2$  active area,
- binary readout,
- integration time 115 μs.

### **EuTelescope software**

| step                                                                                                                                                                                    | data.format                                     | constants    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|
| <b>0. EUDAQ data taking:</b><br>900s                                                                                                                                                    | <b>native.bin,</b> e.g. 200 MB<br>500k triggers |              |
| <b>1. convert, find hot pixels:</b> 70s                                                                                                                                                 | raw.lcio, e.g. 200 MB                           | hotpixel.db  |
| <b>2. clustering:</b> 240s                                                                                                                                                              | <b>clusters.lcio,</b> e.g. 400 MB               | offset.db    |
| <b>3. hits, coarse align:</b> 250s                                                                                                                                                      | hits.lcio, e.g. 600 MB                          | pre-align.db |
| <b>4. Millepede alignment:</b><br>12s                                                                                                                                                   | <b>pede.bin,</b> e.g. 120 MB                    | align.db     |
| <b>5. track fitting:</b> 270s                                                                                                                                                           | <b>tracks.lcio,</b> e.g. 25 MB                  |              |
| script submit-all.sh run energy by Armin Burgmeier                                                                                                                                      |                                                 |              |
| All steps produce ROOT histograms for monitoring.<br>Steps 1-5 require a geometry file defining the telescope.<br>Parameters are passed from xml files. Code in synsry cmspixelupgrade. |                                                 |              |

D. Pitzl (DESY): Pixel resolution in the test beam