Di-tau background estimation in Higgs To Tau Searches with CMS

LHC Physics Discussion Feb 6, 2012

Armin Burgmeier

Higgs Searches in CMS

CMS (SM) Higgs searches with 4.6 – 4.7 fb⁻¹:

Low Higgs masses:

- $H \rightarrow YY$ CMS-PAS-HIG-11-030
- $\blacksquare H \to \tau\tau \to \mu\tau_h 3v, \, e\tau_h 3v, \, e\mu 4v \quad _{\text{CMS-PAS-HIG-11-029}}$
- VH → Vbb → Iv2b, 2I2b, 2v2b

CMS-PAS-HIG-11-031

Mid to High Higgs masses:

- $H \rightarrow WW \rightarrow 2I2v$ _{CMS-PAS-HIG-11-024}
- $H \rightarrow ZZ \rightarrow 4I$, 2I2v, 2I2q, $2I2T_h$

CMS-PAS-HIG-11-025, CMS-PAS-HIG-11-026, CMS-PAS-HIG-11-027, CMS-PAS-HIG-11-028

Results from Dec 13

All channels combined

- Higgs Masses from 127 600 GeV excluded at 95% C.L.
- No conclusive signal yet!

The Tau Lepton

$$m_{_{T}} = 1.78 \text{ GeV}, \text{ ct} = 87 \text{ } \mu\text{m}$$

Decay mode	Resonance	Branching ratio
$T^- \rightarrow e^- VV$	-	17.8%
$T^- \rightarrow \mu^- VV$	-	17.4%
$T^- \rightarrow h^- V$	-	11.6%
$T^- \rightarrow h^- \pi^0 V$	ρ(770)	26.0%
$T^- \rightarrow h^- \pi^0 \pi^0 V$	a ₁ (1260)	10.8%
$T^- \rightarrow h^- h^+ h^- V$	a ₁ (1260)	9.8%

 $(h^{-} = \pi^{-}, K^{-})$

- Missing Energy
- Isolation
- Photons compatible to π⁰
- Displaced tracks
- 1 or 3 charged tracks
- Compatible to heavy resonance

Higgs To Taus in CMS

- μτ_h, eτ_h, eμ channels considered
- "SVfit" mass reconstruction
- VBF category most sensitive

Background in Higgs to Taus

Mass Shapes and/or Normalization for Most background can be obtained from data

- Diboson (WW, WZ, ZZ): Small
- tt: MET Sideband
- QCD: Same Sign Sample
- W + Jets: M_T/P_z Sideband
- Z → TT: Irreducible!!

The Embedding Technique

- Select di-muon events from Z decays in data
- Replace measured muons by simulated generator level tau leptons
- Other event content (UE, PU) taken from data

 Z → µµ and Z → тт kinematically equivalent

Overview of the Method

Closure Test with Monte Carlo

Missing energy in $\tau\tau \to \mu\mu$

SVfit mass in $\tau\tau \to \mu\tau_h$

Embedding describes full event well

Kinematic Distributions

 $\mathcal{L} \simeq 5.00 \, \mathrm{pb^{-1}}, \, \sqrt{s} = 7 \, \mathrm{TeV}$ $13500 \quad \mathsf{KS:} \quad 0.0083 \, \mathsf{P:} \quad 0.36 \quad \mathsf{D} \times \mathsf{DY} \, \mathsf{Summer11} \, \mathsf{MC}$ $12000 \quad \mathsf{DY} \, \mathsf{Summer11} \, \mathsf{MC}$ $2 \to \tau \tau \, \mathsf{Embedded} \, \mathsf{2011} \, \mathsf{Data}$ $7500 \quad \mathsf{DY} \, \mathsf{Summer11} \, \mathsf{MC}$ $7500 \quad \mathsf{DY} \, \mathsf{DY} \, \mathsf{Summer11} \, \mathsf{MC}$ $7500 \quad \mathsf{DY} \, \mathsf{DY$

Missing energy in $\tau\tau \to \mu\mu$

SVfit mass in $\tau\tau \to \mu\tau_h$

Embedding agrees well with MC!

Verification for MC corrections

Normalization

- By cross section and integrated luminosity
 - Luminosity uncertainty stays
- Fit to data
 - Need a signal-free region with high statistics

Absolute normalization

• BR(Z
$$\rightarrow \mu\mu$$
) = BR(Z $\rightarrow \tau\tau$)

Absolute Normalization

$$BR(Z \rightarrow \mu\mu) = BR(Z \rightarrow \tau\tau), but...$$

- Di-muon selection is not 100% efficient
 - Trigger, Quality, Isolation
- Di-muon events from other sources
- Different efficiency of tau isolation
- Reconstructed objects used as gen-level taus

Conclusions

Absolute Normalization in $\tau\tau \to \mu\mu$:

Monte Carlo2505 ± 39Embedding2469 ± 6

(stat. error only)

- No public news since Dec 13
- Many improvements in the pipeline for Moriond
- H → TT channel sensitive to low mass Higgs
 - Large irreducible Z → tautau background
 - Can be estimated with the Embedding method

Backup

Branching Ratio in Higgs To Tau

H → yy at LP2011 and now

Is it different this time?

- We are much more sensitive now we expect the signal to reveal itself
- ATLAS sees something as well
 - Though not quite at the same mass!