SUSY interpretations of the LHC Higgs Search Results

Oscar Stål

LHC Physics Discussion

6.2 2012

LHC Higgs Search Results

 Updated Higgs search results from ATLAS and CMS on Dec. 13 using 2011 dataset (close to 5 fb⁻¹)

$$115.5 \,\mathrm{GeV} < M_h < 127 \,\mathrm{GeV}$$

 SM-like Higgs excluded for M_H > 130 GeV -> Good news for SUSY (heavy non-SM Higgses not excluded – model dependent bounds)

MSSM Higgs sector

- lacktriangle Two complex Higgs Doublets: H_u, H_d
 - -> 8 degrees of freedom, 5 physical Higgs bosons
- ${}^{\blacksquare}$ CP conservation: h,H (CP-even), A (CP-odd), and H^{\pm} $m_H>m_h$
- Higgs sector determined by two parameters at tree-level

$$M_A$$
, $\tan \beta = \frac{v_u}{v_d}$

Other Higgs masses can be predicted:

$$M_h^2 = M_{h,\text{tree}}^2(M_A, \tan \beta)$$

 $M_{h,\text{tree}}^2 \le M_Z^2 \cos^2 2\beta$

MSSM Higgs sector

- lacktriangle Two complex Higgs Doublets: H_u, H_d
 - -> 8 degrees of freedom, 5 physical Higgs bosons
- ${}^{\blacksquare}$ CP conservation: h,H (CP-even), A (CP-odd), and H^{\pm} $m_H>m_h$
- Higgs sector determined by two parameters at tree-level

$$M_A$$
, $\tan \beta = \frac{v_u}{v_d}$

Other Higgs masses can be predicted:

$$M_h^2 = M_{h,\text{tree}}^2(M_A, \tan \beta) + \Delta M_h^2(M_{\text{SUSY}}, A_i, M_i, \dots)$$
$$M_{h,\text{tree}}^2 \le M_Z^2 \cos^2 2\beta$$

MSSM exclusion limits

- In addition to the Dec. 13 results for a light SM-like h, include other searches for heavy MSSM Higgs, e.g. $H/A \to au au$
- Combined limits at 95% CL (no theory uncertainties on Higgs masses)

2012-02-06 LHC Physics Discussion 5

First hint of a Higgs signal?

ATLAS

Largest excess seen at $M_H = 126 \text{ GeV}$ Significance: 3.6 σ local, 2.5 σ including LEE

CMS

Largest excess seen at $M_H = 124 \text{ GeV}$ Significance: 2.6 σ local, 1.9 σ including LEE

First hint of a Higgs signal?

Since Dec. 13 many papers have appeared on this topic

```
[1112.2703], [1112.3017], [1112.3026], [1112.3028], [1112.3032], [1112.3336], [1112.3564], [1112.3645], [1112.3647], [1112.3548], [1112.4146], [1112.4391], [1112.4835], [1112.5099], [1112.5180], [1112.5666], [1201.2611], [1201.2671], [1201.2898], [1201.4338], [1201.5305], [1202.0054] ...
```

Interpretations done in the framework of SM, pMSSM, cMSSM, NUHM, GMSB, AMSB, NMSSM, BMSSM, UMSSM, 2HDM, RS Radions, (insert your favorite model here)

-> No time for a review. Not even of the MSSM results.

MSSM interpretation of $M_h = 125 \text{ GeV}$

Based on S. Heinemeyer, OS, G. Weiglein [1112.3026]

We assume a Higgs boson is present in LHC data

Experimental result: $M_h = 125 \pm 1 \, \mathrm{GeV}$

MSSM Higgs spectrum is calculated with FeynHiggs.
 Theory uncertainty on M_h evaluation (from missing higher orders) of 2 GeV added linearly

$$122 \, \text{GeV} < M_h < 128 \, \text{GeV}$$

 \blacksquare SM top mass (1 σ interval) taken as parametric uncertainty

$$m_t = 173.2 \pm 0.9 \, \mathrm{GeV}$$

Limits on MSSM tree-level parameters

• For a given SUSY mass scale M_{SUSY} , maximize the contributions to M_h from radiative corrections. Maximal stop mixing

$$X_t = A_t - \mu \cot \beta = 2M_{SUSY}$$

• M_h is increasing function of tree-level parameters M_A , tan β

-> Lower bounds can be derived

LEP Excluded
LHC Excluded
M_h = 125+-3 GeV

Limits on MSSM tree-level parameters

	Limits without $M_h \sim 125 \text{ GeV}$			Limits with $M_h \sim 125 \text{ GeV}$		
$M_{ m SUSY} \ ({ m GeV})$	$\tan \beta$	$M_A \text{ (GeV)}$	$M_{H^{\pm}} ({\rm GeV})$	an eta	$M_A \text{ (GeV)}$	$M_{H^{\pm}} ({\rm GeV})$
500	2.7	95	123	4.5	140	161
1000	2.2	95	123	3.2	133	155
2000	2.0	95	123	2.9	130	152

LEP Excluded
LHC Excluded
M_h = 125+-3 GeV

Limits on MSSM tree-level parameters

	Limits without $M_h \sim 125 \text{ GeV}$			Limits with $M_h \sim 125 \text{ GeV}$		
$M_{ m SUSY} \; ({ m GeV})$	an eta	$M_A \text{ (GeV)}$	$M_{H^{\pm}} ({\rm GeV})$	an eta	$M_A ext{ (GeV)}$	$M_{H^{\pm}} \; (\mathrm{GeV})$
500	2.7	95	123	4.5	140	161
1000	2.2	95	123	3.2	133	155
2000	2.0	95	123	2.9	130	152

Constraints on MSSM stop sector parameters

- We can also ask for a lower limit on the radiative corrections: $M_{h,{\rm tree}} \to M_Z$ (decoupling limit)
- High SUSY mass scale and/or large stop mixing required
 Can also be interpreted as a lower limit on the lightest stop mass

Constrained versions of the MSSM

SUSY Higgs at M_h = 125 GeV in constrained scenarios

• Appears still OK with simple scenarios for gravity mediation (witgh large trilinear A_0). GMSB and ASMB under pressure.

Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon [1112.3028]

Alternative interpretation: M_H=125 GeV

- Viable to have the second lightest MSSM Higgs boson at 125 GeV?
 - -> The answer is yes!

• Small corner of $(M_{\Delta}$, tan β) where this is possible

LEP Excluded
LHC Excluded
M_H = 125+-3 GeV

 In these scenarios the lightest Higgs is always below the LEP limit (with reduced couplings). ->LHC limits for lower M_H interesting

Including rate information

 Best fit signal strength is compatible with the SM, with room for an enhanced γγ rate

$$R_{\gamma\gamma}^{h_i} = \frac{\sigma(pp \to h_i) \times \text{BR}(h_i \to \gamma\gamma)}{\sigma(pp \to h_i)_{\text{SM}} \times \text{BR}(h_i \to \gamma\gamma)_{\text{SM}}} \gtrsim 1$$

MSSM scenarios with SM rates

Scan over (low-energy) MSSM parameters

2012-02-06 LHC Physics Discussion 16

[1112.3336]

increased $\mathrm{BR}(h \to \gamma \gamma)$ from light $\tilde{\tau}$ contributions

Beyond the minimal model: the NMSSM

R. Benrik, S. Heinemeyer, M. Gomez, OS, G. Weiglein, L. Zeune (in preparation) See also [1112.3548], [1201.2671]

$$m_h^2 = m_Z^2 \cos 2\beta + \lambda^2 v^2 \sin 2\beta + \Delta m_h^2 \qquad W_{(2)} = \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d$$

lacktriangle Suppression of $h_1 o bar b$ by singlet mixing enhances $\gamma\gamma$

Conclusions

- LHC Higgs search results are starting to become really interesting as a probe of physics beyond the Standard Model.
 - A large part of the MSSM (m_A , tan β) plane is already excluded
- Two possible MSSM interpretations of a 125 GeV excess:
 - $M_h = 125 \text{ GeV} -> \text{Lower limits on parameters}$ $M_H = 125 \text{ GeV} -> \text{Small parameter space still viable}$
- Constrained models (GMSB, AMSB) in trouble.
- $M_h = 125$ GeV with SM $\gamma\gamma$ rate can be fitted for allowed (M_A , tan β)
- NMSSM: M_{h1}/M_{h2} = 125 GeV with smaller need for radiative contributions than in MSSM. Additional mechanism for $R_{\gamma\gamma} > 1$ through singlet-doublet mixing.