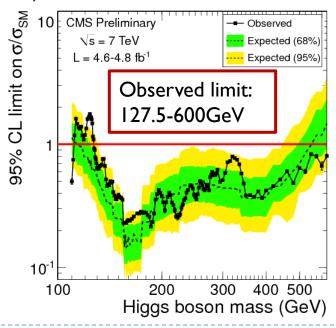
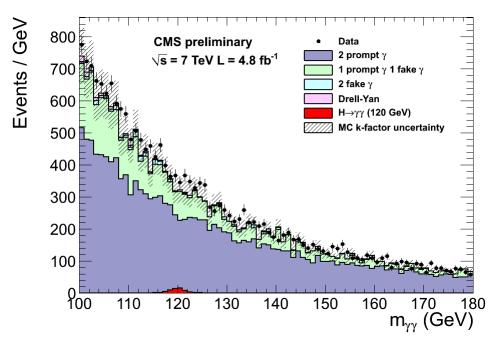

Latest Higgs results from CMS


Agni Bethani (DESY/KIT) LHC Discussions 19/03/2012

SM Higgs at CMS

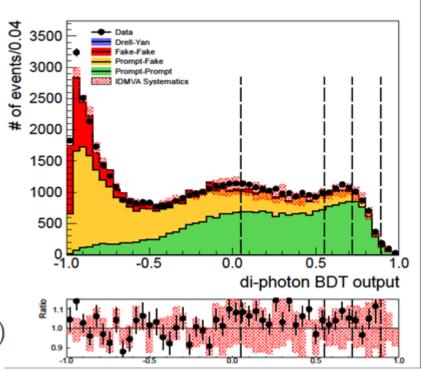
Moriond 2012

- ▶ Higgs search in the mass range II0-600 GeV
- Data analysed correspond to 4.6-4.8 fb⁻¹
- ▶ Expected limit: I 14.5 543 GeV at 95% CL
 - ▶ (last expected limit was I I 7 543 GeV)

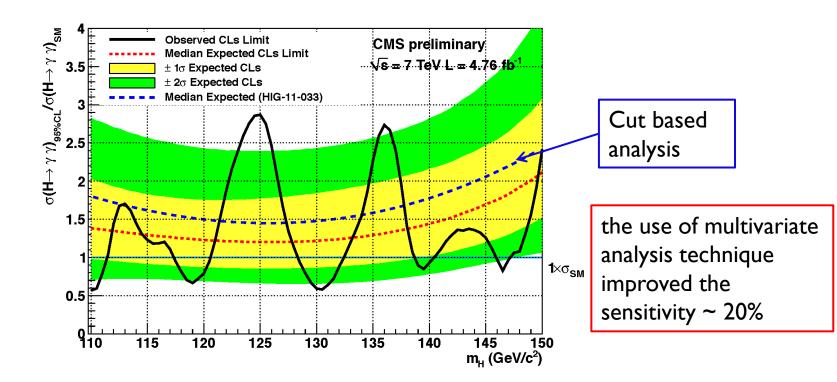

Higgs decay channels

Channel	m_H range	Luminosity	Sub-	$m_{ m H}$	Comment	•
	(GeV)	(fb^{-1})	channels	resolution		
$H \rightarrow \gamma \gamma$	110-150	4.8	2	1-2%	updated	
$H o \gamma \gamma$ (fermiophobic)	110-150	4.8	4	1–3%	new	
$H \to \tau \tau \to e \tau_h / \mu \tau_h / e \mu + X$	110–145	4.6	9	20%	unchanged	DES'
$H \rightarrow \tau \tau \rightarrow \mu \mu + X$	110-140	4.5	3	20%	new	KIT
$WH \rightarrow e\mu\tau_h/\mu\mu\tau_h + \nu's$	100-140	4.7	2	20%	new	
$(W/Z)H \rightarrow (\ell\nu/\ell\ell/\nu\nu)(bb)$	110–135	4.7	5	10%	unchanged	
$H \to WW^* \to 2\ell 2\nu$	110-600	4.6	5	20%	unchanged	_
$WH \rightarrow W(WW^*) \rightarrow 3\ell 3\nu$	110-200	4.6	1	20%	new	
$H \to ZZ^{(*)} \to 4\ell$	110-600	4.7	3	1–2%	unchanged	
$H o ZZ o 2\ell 2\nu$	250-600	4.6	2	7%	unchanged	
$H \to ZZ^{(*)} \to 2\ell 2q$	\begin{cases} 130-164 \\ 200-600 \end{cases}	4.6	6	3% 3%	unchanged	
$H \to ZZ \to 2\ell 2\tau$	190–600	4.7	8	10-15%	unchanged	

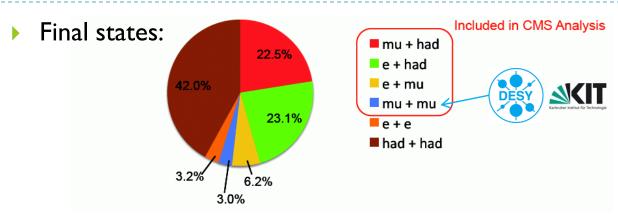
- II independent channels combined in the SM search
- Exclusion limits also calculated for the SM4 and fermiophobic Higgs;
 - ▶ Dedicated search by the $H \rightarrow \gamma \gamma$ group


$H \rightarrow \gamma \gamma$

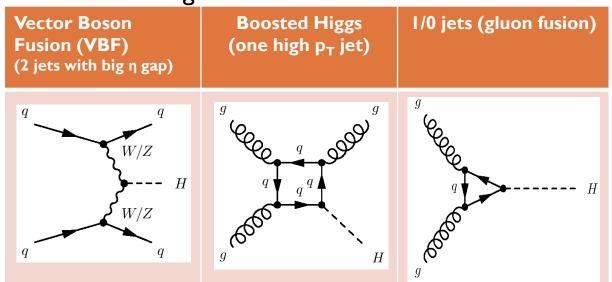
- Narrow peak in the diphoton mass distribution
- Preselection: two isolated high E_t photon candidates
- Main backgrounds:
 - Irreducible: QCD diphoton production
 - ► Reducible: $pp \rightarrow \gamma + jet$, $pp \rightarrow jet + jet$, $DY \rightarrow ee$. (fake photons)


$H \rightarrow \gamma \gamma$

- Use of multivariate analysis discriminator (BDT)
 - kinematic properties of photons
 - relative diphoton mass resolution
 - photon identification BDT output
- Event Categories
 - VBF topology (improves the analysis sensitivity 10%)
 - remaining events (99% of the events)
 - Further splitting in four categories, based on the MVA discriminant, in order of decreasing signal sensitivity (best expected exclusion limit)


catl	cat2	cat3	cat4
0.05-0.55	0.55-0.72	0.72-0.89	0.89-1.00

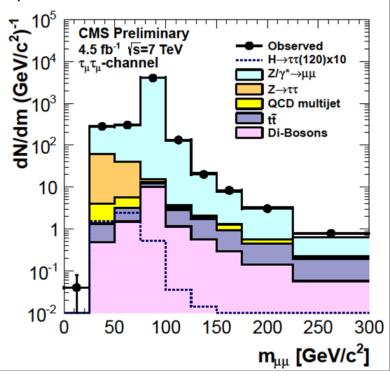
$H \rightarrow \gamma \gamma$: Results



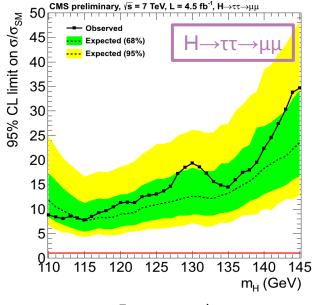
- Expected 95% CL exclusion: 1.2-2 x SM
- Excluded at 95% CL:
 - ▶ 110.0-111.0, 117.5-20.5, 128.5-132.0, 139.0-140.0, 146.0-147.0 GeV
- Local significance 2.9 σ , Global significance 1.6 σ

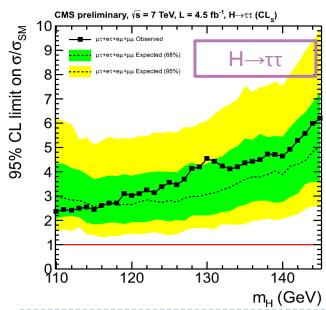
$H \rightarrow \tau \tau$

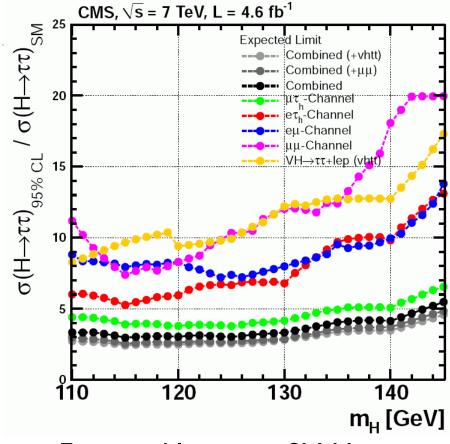
Event Categories



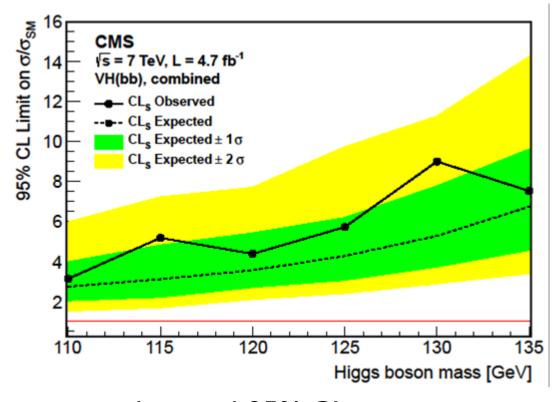
- Also considered : WH→ττ
 - eμτ_h
 - μμτ_h
 - ▶ (same sign leptons)
 - Sensitive to WH→WWW


 $e,\mu : \tau \rightarrow lv_l v_\tau$ $\tau_h : \tau \rightarrow hadrons + v_\tau$


Η→ττ


- ► H \rightarrow ττ \rightarrow eμ,μμ,eτ_h,μτ_h
 - Irreducible background: $Z \rightarrow \tau \tau$
 - Embedding method (in $Z\rightarrow \mu\mu$ events from data the dimuon system is replaced by a simulated ditau system)
- Η→ττ→μμ
 - Irreducible background: $Z\rightarrow \mu\mu$
 - estimated by fitting the distance of closest approach significance
 - Very challenging channel!
 - Use of likelihood function

Η-νττ

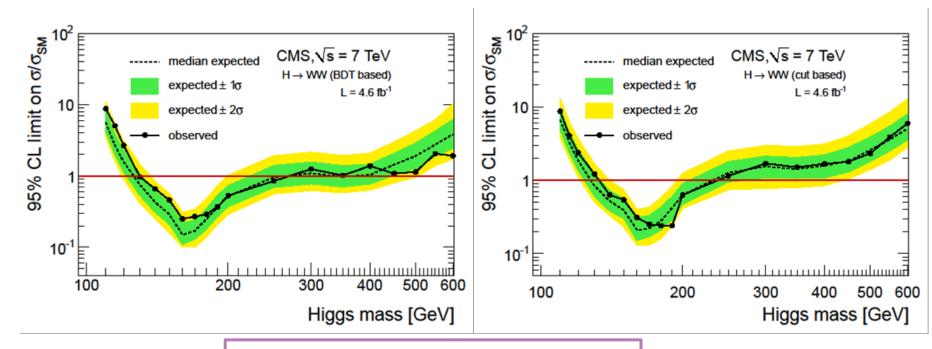


- Expected limits on SM Higgs cross section in the H→ττ search improved by 10-17%
- ▶ Observed limits: 2.5-6 x SM

H→bb

- Higgs production in association with W or Z
- Final states:
 - W→ev,μv
 - ► Z→ee,μμ,νν (Z→νν identified by large Etmiss)
- Dijet system: both jets tagged as b-quark jets
- Multivariate analysis techniques (cut on MVA output)

- observed 95% CL upper limits: 3.4-7.5 x SM
- expected limits: 2.7-6.7 x SM

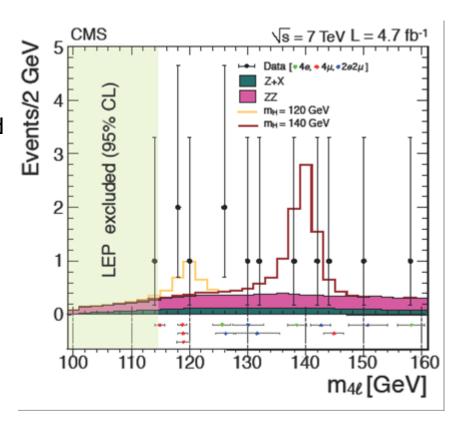

$H \rightarrow WW \rightarrow l\nu l\nu$

Signature

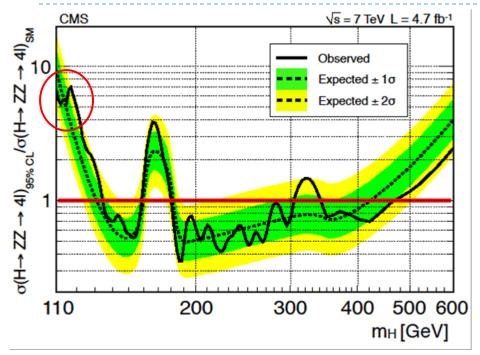
- 2 opposite sign leptons
- high p_t
- isolated
- Large E_{tmiss}
- Event categories
 - ▶ 3 cat. according to jet multiplicity
 - ▶ 0,1 or 2 jets
 - ▶ 3 cat. according to final states
 - ee, μμ or eμ
- Two analysis performed for the categories 0 and 1 jets
 - Multivariate analysis
 - Cut based analysis
- Only cut based for the 2 jets category

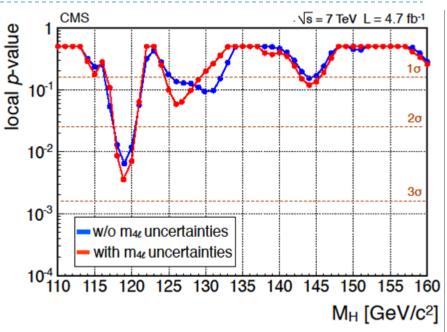
The motivation for the event categories is the different background contributions for every topology

$H \rightarrow WW \rightarrow l\nu l\nu$


Multivariate analysis is more sensitive

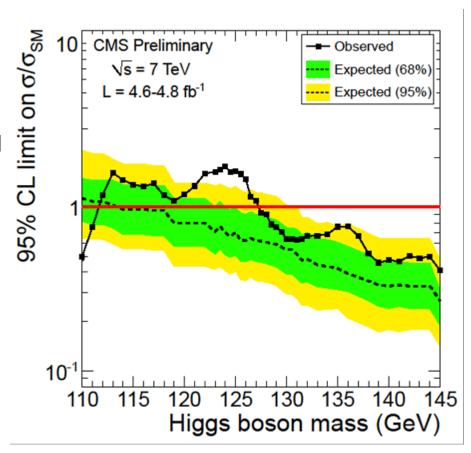
- Multivariate analysis:
 - Expected limit: 127-270 GeV
 - Observed limit: 129-270 GeV
- Small excess in the low mass region

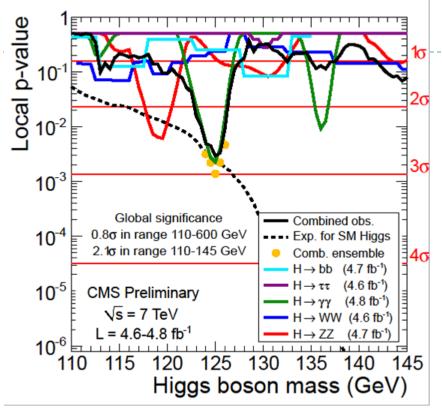

- Cut based analysis:
 - Expected limit: 129-236 GeV
 - Observed limit: 132-238 GeV

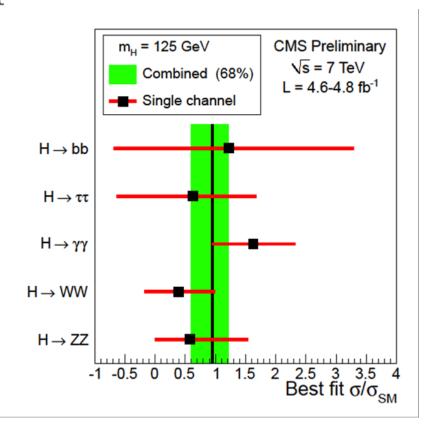

$H \rightarrow ZZ \rightarrow 41$

- Clear channel:
 - 2 high mass pairs of isolated e or μ
- Narrow mass peak
 - very good mass resolution
- The 3 sub-channels (4e,4μ,2e2μ) are analysed seperately
 - differences in the 4 lepton mass resolution
 - different background rates
- Main background : non-resonant ZZ production
 - estimated from simulation
- In 100-160 GeV
 - ▶ Bkg expected : 9.5±1.3
 - Data: 13

$H \rightarrow ZZ \rightarrow 41$

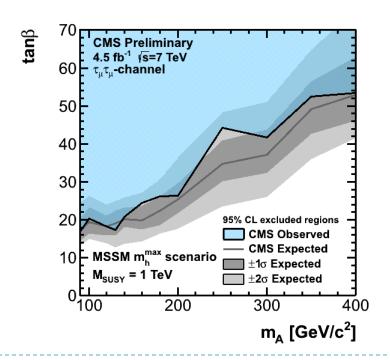


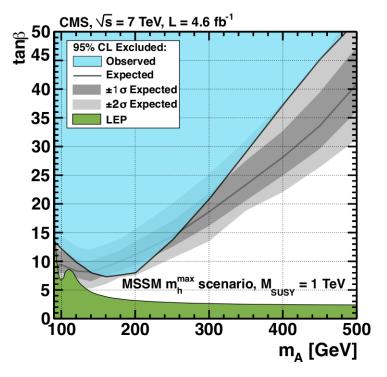

- Excess observed at 119.5 GeV
 - ightharpoonup Local significance 2.5 σ
 - Global significance 1.0 σ in the full mass range, 1.6 σ in the 100-160 GeV mass range
- ▶ SM Higgs excluded at 95%CL for M_H in the ranges:
 - ▶ 134-158 GeV
 - 180-305 GeV
 - > 340-465 GeV

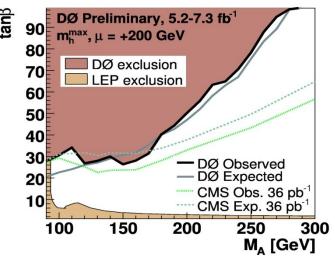

Combined results: SM

- Method for CL calculation was developed by the CMS and ATLAS collaborations in the context of the Higgs Combination Group
 - Frequentist CLs with profiled likelihood test statistics
- Expected: 95% exclusion M_H
 - ▶ 114.5-543 GeV
- Observed: 95% exclusion M_H
 - ▶ 127.5-600 GeV
- Observed lower limit higher than expected because of excess in data

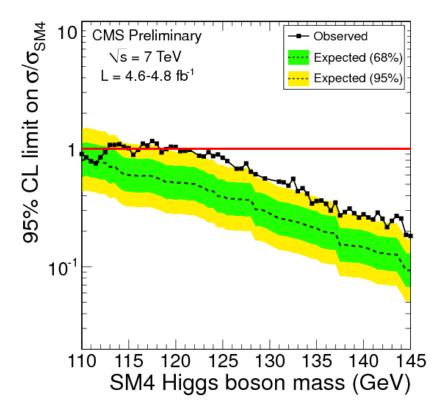
Combined results: SM

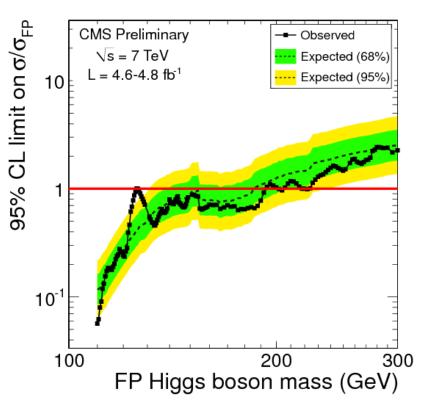





- Minimum p-value observed at 125 GeV
 - local significance 2.8 σ
 - \blacktriangleright global significance 0.8 σ in the 110-600 GeV mass range
 - global significance 2.1 in the 110-145 GeV mass range
- \blacktriangleright The fitted σ of the excess near 125 GeV is consistent with SM Higgs expectation
- Other channels show some excess in the low mass region
- At 125 GeV all sensitive channels show an excess consistent with signal expectations

Beyond SM: MSSM

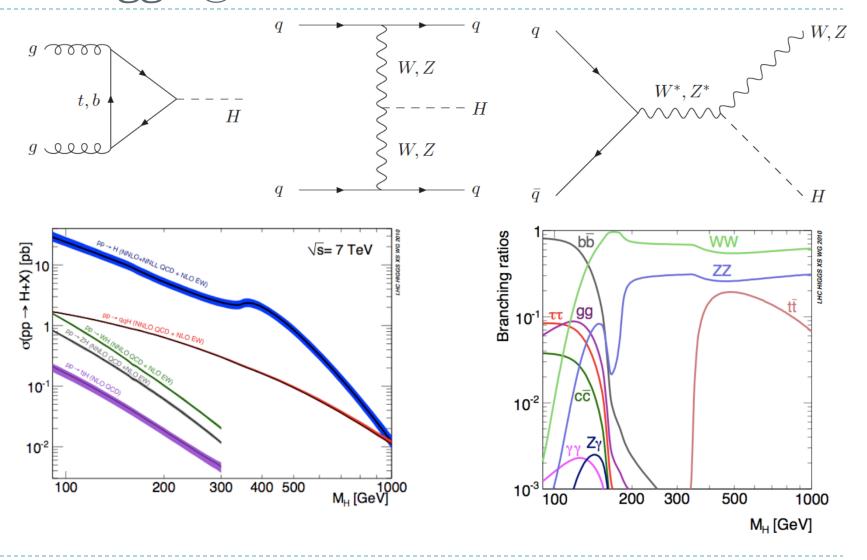

- Excluded 95% CL values of tanβ as low as 7.1 at $m_A = 160 \text{ GeV}$
- The H→ττ→μμ alone "beats" the latest Tevatron results



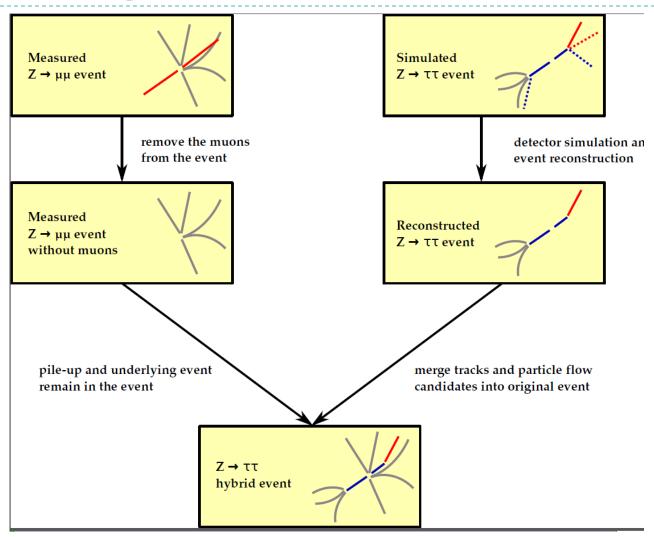
Beyond SM: SM4 and fermiophobic

- Extension of the SM including a 4th generation of fermions
- Excluded at 95% CL in the mass range 120-600 GeV

- The Higgs doesn't couple to fermions
- Dedicated analysis from the $H\rightarrow \gamma\gamma$ group
- Excluded at 95% CL in the mass range 110-192GeV

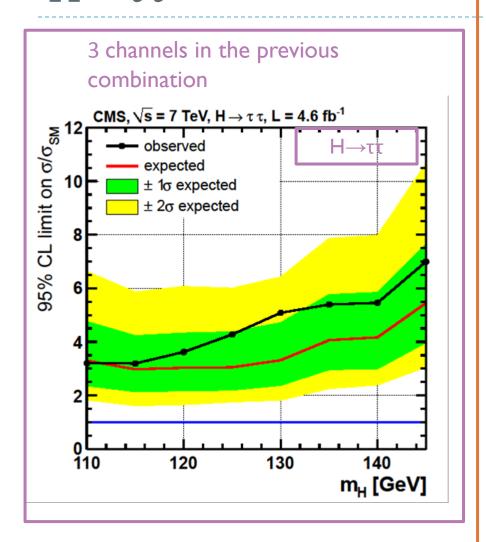

Summary

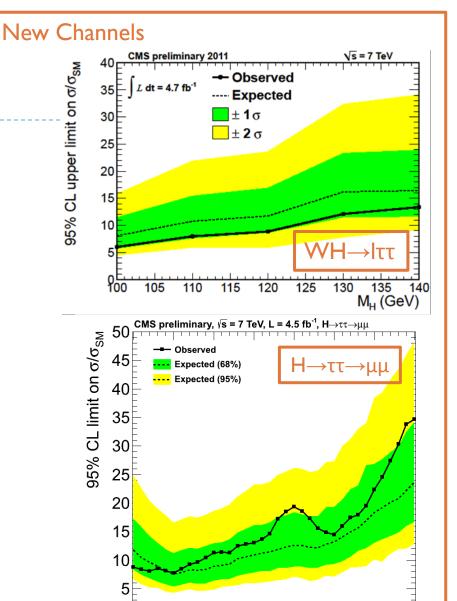
- Search for standard model Higgs boson were performed in 11 channels
- The SM Higgs is not excluded (at 95% CL) in the mass range 114.4-127.5 GeV
- Most significant excess around 125 GeV
 - Local significance 2.8 σ; Global 0.8 σ; In the low mass range (110-145) 2.1 σ
 - Consistent with SM Higgs and background fluctuation
- Searches are performed in BSM models (MSSM, SM4 fermiophobic)


By the end of 2012 we will know!

Back up slides

SM Higgs @ the LHC


Embedding method



Fermiofobic H→γγ

- Bratio enhanced by an order of magnitude
- Production cross section suppressed by an order of magnitude
- Allowed production mechanisms: VBF and assosiated production with W or Z
- Event Categorisation:
 - VBF
 - H+μ
 - ▶ H+e
 - remaining events; Subdivided in 4 categories based on the quality of the electromagnetic shower and the measurement position
- Final discriminants:
 - VBF, H+ μ , H+e m_{$\nu\nu$}
 - remaining events: 2D distribution m_{yy} , p_T^{yy}/m_{yy}

$H \rightarrow \tau \tau$

120 125 130

135 140 145 m_H (GeV)

$WH \rightarrow WWW \rightarrow 313v$

- Signature:
 - 3 leptons
 - ▶ E_{tmiss}
- Largest BackgroundZW→3Iv
 - Requirement that the same flavour oppositely charged lepton pairs have dilepton mass ≠ m₇
- Other backgrounds estimated from data
- ZZ→4l from simation

$H \rightarrow ZZ \rightarrow 41$ (full mass range)

Baseline	4e	4μ	2e2µ	
ZZ	12.27 ± 1.16	19.11 ± 1.75	30.25 ± 2.78	
Z+X	1.67 ± 0.55	1.13 ± 0.55	2.71 ± 0.96	
All background	13.94 ± 1.28	20.24 ± 1.83	32.96 ± 2.94	
$m_{\rm H}=120{\rm GeV}/c^2$	0.25	0.62	0.68	
$m_{\rm H}=140{\rm GeV}/c^2$	1.32	2.48	3.37	
$m_{\rm H}=350{\rm GeV}/c^2$	1.95	2.61	4.64	
Observed	12	23	37	