Introduction to

Statistics

Blockkurs Krippen 2012

Philipp Anger
TU Dresden
16th of March 2012

Introduction

- What is a hypothesis in statistics?
- What is a *p*-value?
- What means significance?
- What is the Likelihood Ratio?
- What is a statistical test?
- How to claim discovery and exclusion?

Mainly taken from "Asymptotic formulae for likelihood-based tests of new physics", Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells http://arxiv.org/pdf/1007.1727.pdf

Introduction

Hypotheses

	Discovery	Exclusion
Null Hypothesis H0	known processes, Standard Model, background-only	signal and background
Alternative Hypothesis H1	background and signal	background-only

Main Goal: exclude H0

p-value:

"(...) probability, under assumption of H0, of finding data of equal or greater incompatibility with the predictions of H0 (...)" than has been observed by experiment.

Standard Gaussian ($\sigma = 1$)

Significance

Cummulative Gaussian (inverse of Standard Gaussian)

$$Z = \Phi^{-1}(1-p)$$

- ☐ How do I get the observed significance/p-value from data?
- How do I get the expected (median) significance/p-value?

for only **one** true-value point:

- (1) What to do with statistical uncertainties?
- (2) What to do with nuisance parameters?

any parameter that is not of direct interest in the final result

Profile Likelihood Ratio as Test Statistic

$$\lambda(\hat{\mu}) = \frac{L(\mu, \hat{\mathbf{b}})}{L(\hat{\mu}, \hat{\mathbf{b}})}$$

$$t_{\mu} = -2\ln\lambda(\hat{\mu})$$

$$t_{\mu} = -2\ln\lambda(\mu)$$

conditional maximum-likelihood estimator for given value of μ

unconditional maximum-likelihood estimator

$$L(\mu, \theta) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

likelihood function, more precisely $L(n, \mathbf{m} | \mu, \mathbf{b})$

Poisson probabilities for "signal" and background estimation

Mean number of signal/background

- Expectation value of number of events: $E[n] = \mu s + b$
- Sidebands/Subsidiary measurements: $E[m] = u(\theta)$ (e.g. to determine background b)

for only **one** true-value point:

Sampling distribution

With some appoximations and assumptions

[Wald approximation, Wilks approximation, Asimov dataset, see paper]

the result is a simple chi-square distribution:

$$f(t_{\mu}|\mu) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{t_{\mu}}} e^{-t_{\mu}/2}$$

Discovery Significance

Calculations [see paper] result in the easy formula

$$Z_0 = \sqrt{t_0}^{\text{remember: discovery} \rightarrow \text{ exclude background-only} \rightarrow \mu = 0}$$

with [see last slides]:

$$t_{\mu} = -2\ln\lambda(\mu)$$

$$\lambda(\mu) = \frac{L(\mu, \hat{\mathbf{b}})}{L(\hat{\mu}, \hat{\mathbf{b}})}$$

$$L(\mu, \theta) = \frac{(\mu s + b)^n}{n!} e^{-(\mu s + b)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

Upper Limit Significance

Calculations [see paper] result in the easy formula

$$Z_{\mu} = \sqrt{t_{\mu}}$$

If Z_{μ} is found above a specific value (1.64; $p_{\mu} < 5\%$) one says " μ is excluded"

Now it's easy to calculate upper limit on μ ...

- Material How do I get the observed significance p-value from data?
- ☐ How do I get the expected (median) significance/p-value?

Experimental Sensitivity

What is the expected (more precisely, median) significance of an experiment?

This means: No data available → no observed value t_{µ,0} available

Discovery: $\operatorname{med}[Z_0|\mu'] = \sqrt{q_{0,A}}$

Limit: $\operatorname{med}[Z_{\mu}|0] = \sqrt{q_{\mu,\mathrm{A}}}$

expecting Asimov data set:
Use the estimated values from
MC as measured values.

$$n_{i,A} = E[n_i] = \nu_i = \mu' s_i(\theta) + b_i(\theta)$$
,
 $m_{i,A} = E[m_i] = u_i(\theta)$.

Last Slide Famous Higgs Exclusion Plot

hypothetical data example:

ATLAS has found 100 Higgs candidates for a masspoint SM predicts 200

Quotient = 0.5

Upper Limit = 0.8

ATLAS could have measured a maximum of 160 Higgs (95%)

160 < 200 -> Exclusion

Thank you