


### Electronic developments, concepts and applications for the Experiments and Photon Beam Line DAQ System

Patrick Gessler European XFEL WP75 and WP76



# XFEL Agenda

2

- Instruments to be integrated in DAQ
- Requirements of the DAQ system
- Concepts, usage and developments
  - Beckhoff EtherCAT for slow control
  - MicroTCA.4 as main platform
  - ATCA for large scale systems (e.g. Train builder)
  - Special form factors for integrated systems (e.g. 2D detectors)
- Data processing and transmission concept
- VETO system for data reduction memory optimization



Instruments to be integrated in DAQ



## Optics (WP73)

- KB mirrors for focusing
- Refractive lens focusing
- Monochromatic
- Collimator
- Slits

European

XFEL

- Attenuators
- ..

### Sample environment (WP79)

- Particle injector
- Cryostat
- Precision stages
- ...

### Beam diagnostics (WP74)

- Intensity monitors
- Beam positioning monitor
- Photon-electron spectrometers
- K-monochromator
- Screens and cameras
- ...

### Measurement instruments (WP8x)

- e- and ion TOF
- Point detectors
- Spectrometers
- •
- Laser systems (WP78)
  - Pump laser and diagnostics
  - ...
- Vacuum systems (WP73)
  - Turbo pumps
  - Ion pumps
  - ...
- Detectors (WP75)
  - AGIPD
  - LPD
  - DSSC
  - pnCCD
  - ...



# **XFEL** Requirements of the DAQ system



### High data volume to be processed and saved

| Detector type       | Sampling | Data/pulse | Data/train | XFEL/sec | LCLS/sec |
|---------------------|----------|------------|------------|----------|----------|
| 1 Mpxl 2D camera    | 4.5 MHz  | ~2 MB      | ~1 GB      | ~10 GB   | ~300 MB  |
| 1 channel digitizer | 5 GS/s   | ~2 kB      | ~6 MB      | ~60 MB   | ~0.2 MB  |

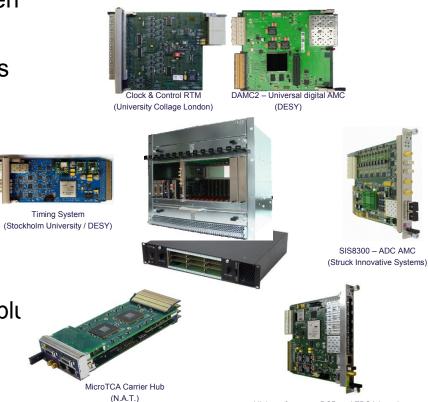
- Possibility to save all acquired data (but should be avoided)
- Scalability (combination and number of applications)
- Remote control and monitoring
- Extension and replacement during operation
- Early data processing and reduction
- Compatibility to machine hardware (e.g. Timing)



# Beckhoff EtherCAT for slow control (N. Coppola)

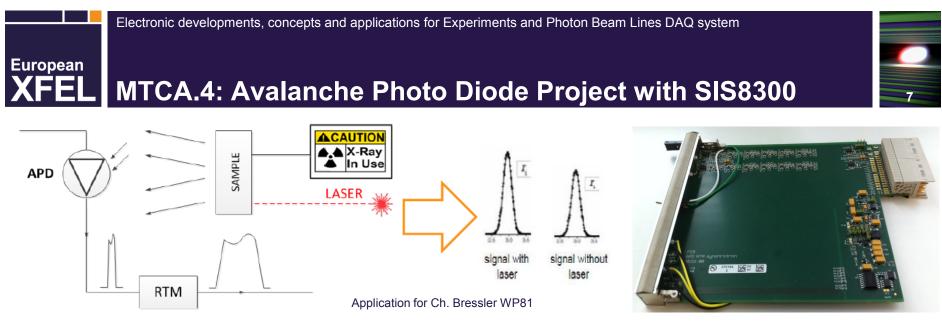
- Integration of Beckhoff EtherCAT PLC rails in DAQ and control systems
- Allows complete software and hardware redundancy, steering and complete synchronization of slow varying quantities (~100 Hz)
- Real time Ethernet based control is widely used at light sources
- Usual systems to be controlled or values acquired
  - Digital I/O quantities

European


- Analog I/O quantities
- **Environmental quantities**
- Synchronized and unsynchronized movements of motors for positioning at the highest resolution Digital I/O Analogue I/O Stepper
- Vacuum pumps
- Vacuum gauges
- Synchronized with Timing System
- Interfacing with MPS

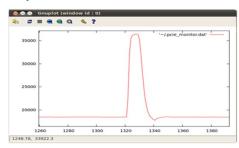





# **XFEL** MicroTCA.4 as main platform

- MicroTCA.4 allows
  - High-bandwidth communication between
    - Boards and CPU via PCIe
    - Boards via point-to-point connections
  - Synchronization via Timing Receiver
    - Trigger
    - Clocks
    - Machine parameters
    - Bunch structure
  - Remote control and monitoring
  - Module changes during operation (Hotplu
  - Functional extension via RTMs




High-performance DSP and FPGA board (DMCS/DESY)





- Using a COTS ADC Module from Struck widely used at XFEL (LLRF, BPM,...)
- A customized RTM had been developed in collaboration with Peter Goettlicher (DESY) for
  - Interfacing to the APD detector
  - Shaping the signal increasing the pulse length and maintain the amplitude information
- Processing in FPGA or CPU and streaming of data
- System was tested with beam and APD module at Petra III (Good contact to P01 BL)
- Besides the foreseen use in WP81 it serves as an important test bed for
  - VETO source and related signal generation
  - Using Simulink for algorithm implementation
  - Device server implementation for MTCA.4

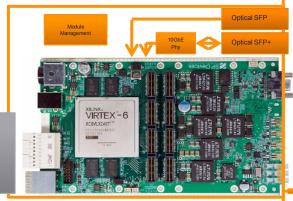
Curtsey: B. Fernandes (XFEL)










# **XFEL** MTCA.4: High-Speed Digitizer developments

### A development with SP Devices Sweden AB just started

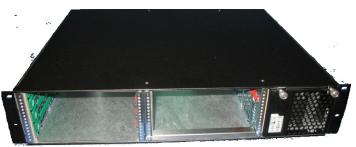
| Product | Resolution            | Maximum<br>Sample Rate      | Analog<br>Bandwidth | Channels      | On-Board<br>Memory Size | Interface             |
|---------|-----------------------|-----------------------------|---------------------|---------------|-------------------------|-----------------------|
| SDR14   | 14bit in<br>14bit out | 800 MSPS in<br>1600 MHz out | 500 MHz             | 2 in<br>2 out | 2 x 500 Mbyte           | USB, cPCIe/PXIe, PCIe |
| ADQ108  | 8 bit                 | 7 GSPS                      | 2 GHz               | 1             | 1024 MS                 | USB, cPCle/PXle, PCle |
| ADQ412  | 12 bit                | 1.8/3.6 GSPS                | 2/1.3 GHz           | 4/2           | 700 MS                  | USB, cPCIe/PXIe, PCIe |
| ADQ1600 | 14 bit                | 1.6 GSPS                    | 800 MHz             | 1             | 500 MS                  | USB, cPCIe/PXIe, PCIe |
| ADQ DSP | -                     | -                           | -                   | -             | 1 GByte                 | USB, cPCIe/PXIe, PCIe |

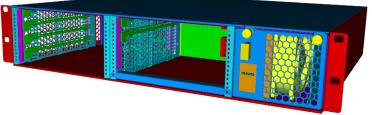
- They will design an AMC version of their digitizer family
  - Additional interfaces and MTCA.4 connectivity added
  - Final products expected end of Q4 2012



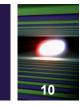


Development of an MTCA.4 compatible AMC


#### Applications


- Photon Diagnostics
  - XGMD
  - XBPM
  - PES
- Detectors
  - 0D (e.g. APD)
  - 2D (e.g. pnCCD)
- Experiments
  - eTOF, iTOF




# **XFEL** MTCA.4: 2U small crate with 6 slots

- Development with PowerBridge and Schroff
  - 2U high MTCA.4 crate with
    - 4 slots with double size AMC with RTM
    - > 2 slots with double size AMC
    - → 1 MCH
    - J Power Module
  - Prototype expected in May
  - When successfull, plan of
    - 4U high 12 slot version and
    - > 6U high 12 slot version with full redundency









# **XFEL** 2D Detector developments

### AGIPD Adaptive Gain Integrating Pixel Detector (AGIPD)



Energy range 3 - 13 keV Dynamic range 10⁴@12 keV

Single Photon Sens.xyGap Storage Cells ≈ 300

### DEPFET Sensor with Signal Compression (DSSC)

Energy range 0.5 - 6 keV (25 keV) Dynamic range 6000 ph/pix/pulse@1 keV Single Photon Sens. Regulator Board Storage Cells ≈ 640

### Large Pixel Detector (LPD)



Energy range 5 (1) - 20 keV (25 keV) Dynamic range 10<sup>5</sup>@12 keV Single Photon Sens. Storage Cells ≈ 512

### **Other Detectors**

Frame

- 0D/1D detectors for high repetition rate applications (e.g. veto, dispersive spectrometers)
- Small areas, low rep. rate, low energy 2D imaging detectors
- Particle detectors (eTOF, iTOF)

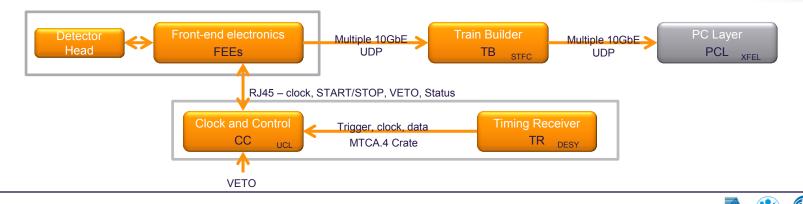


# **XFEL** 2D detector control and processing

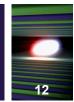
- Control and synchronization
  - Clock and Control RTM
  - Synchronized with Timing Receiver
  - One RTM controls a 1 Mpixel Detector
- Data reorganization and processing in Train Builder
  - Partial frames will be reassembled
  - A complete train put into memory
  - Transmitted via 10GbE to PC Layer
    - → Dual 10GbE FMCs from DESY/FEA



Clock and Control RTM (UCL)

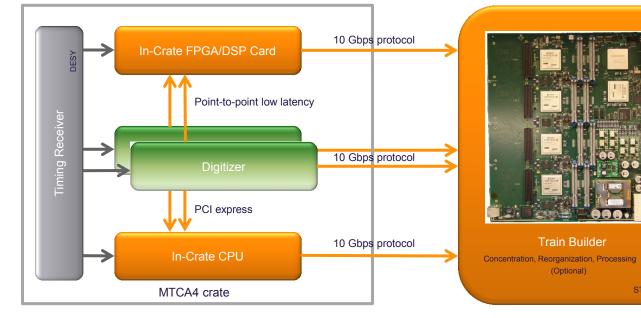



Train Builder ATCA Board (STFC)




HELMHOLTZ

DAMC2 (DESY/FEA)




Electronic developments, concepts and applications for Experiments and Photon Beam Lines DAQ system



# European

### **XFEL** Data processing and transmission concept



In-crate processing

- In FPGAs of Digitizer
- In local CPU
- In a DSP/FPGA Bord

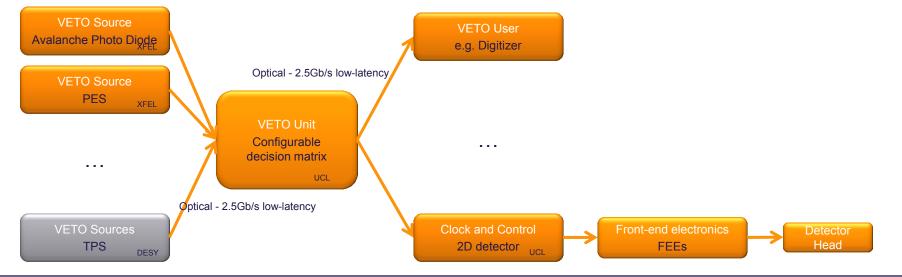
- Processing of multiple sources
  - Processing in FPGAs
  - **Multiple Boards**
  - Communication between all **FPGAs**
  - DDR and QDR Memory

PC Layer

PC Layer

PCL XFE

- Software
- **CPUs**
- **GPUs**

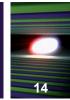



# VETO System for data reduction and memory optimization

- Optimize picture quality of 2D detectors
  - Limited frame capacity in ASICs (~300-700 frames)
  - Replace bad frames with new ones in ASIC before read out and transmission
- Data reduction

European

- Discard useless data before transmission
- Implementation
  - FPGAs of diagnostics and detectors provide bunch information with low-latency
  - Configurable central VETO unit per experiment decides on bunch quality
  - FPGAs of detectors (maybe also diagnostics) receive the decision and react on it
  - Using a common protocol with beam based feedback system










Electronic developments, concepts and applications for Experiments and Photon Beam Lines DAQ system



Time for questions...

