

Integration of experiments and diagnostics

1st Meeting of the European XFEL Accelerator Consortium 17.4.2012

C.Youngman for WP76

European

DAQ

significant

XFEL List of PBS components to control

Optics (WP73)

- KB mirrors for focusing
- Refractive lens focusing
- Monochromator
- Collimator
- Slits
- Attenuators

Vacuum systems (WP73)

- Turbo pumps
- Ion pumps

Beam diagnostics (WP74)

- Intensity monitors
- Beam positioning monitor
- Photon-electron spectrometers
- K-monochromator and cameras

Tunnels contain components listed above

Screens and camera

Laser systems (WP78)

Pump laser and diagnostics

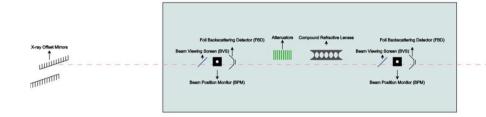
Sample environment (WP79)

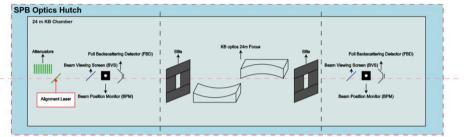
- Particle injector
- Cryostat
- **Precision stages**

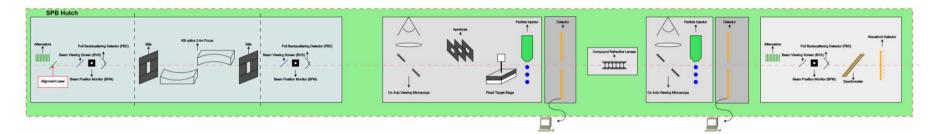
Experiment detectors (WP8x)

- e- and ion TOF
- Point detectors (diodes)
- **Spectrometers**

Experiment 2D detectors (WP75)


- AGIPD
- I PD
- DSSC
- pnCCD


Experiment hutches contain components above + many of the tunnel instruments


To make a measurement it is necessary to control experiment, diagnostic and optics components

ACC meeting 17.4.2012 - Controls software session

XFEL Draft layout of SPB experiment (~CXI at LCLS)

Components to control

- Diagnostics stations, cameras, screens
- Focusing CRL, KB... components
- Attenuators, apertures, slits
- Pumps, valves, gauges, motors
- Sample injection and laser systems
- eTOF, diodes, 2D cameras, spectrometer...

Component control channel count.

- Digital In/Out (412/52)
 - Analog In/Out (168/9)
- Serial IO (39)
- Relays (48)
- Axis (241)

- Digitizers (1)
- Fast ADCs (28)
- Single shot cameras (9)
- Pixel cameras (2)
- · · · ·

The integration of large number of components is easier if a few solutions are reused often

The EtherCAT distributed slow control system described by the previous speaker is a reusable solution.

European

XFEL Timing and Synchronization Systems for XFEL

	Timing System (WP28)	Optical Synchronization (WP18)	
Provides Clocks, Triggers and Data		Clocks	
Stability	Less than 100ps	Less than 50fs	
Applications	DAQ and Detector sequencing	Synchronize lasers to beam	
 Drift is actively competing Transmits events use 	HTCA Crate	 Optical synchronization is required to be in phase with beam Timing is required to select the correct pulses 	

The e-machine Timing system (DAQ synch.) and optical synchronization (Laser synch.) interfaces are (re)used as is.

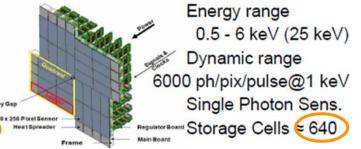
The e-machine MTCA.4 and ATCA crate and board standards are also (re)used.

European XFEL


_XFEL detectors (source: WP75 – Oct 2011)

AGIPD Adaptive Gain Integrating Pixel Detector (AGIPD)

T			7
	E		
	E	E	


Energy range 3 - 13 keV Dynamic range 10⁴@12 keV Single Photon Sens.*** Storage Cells ≈ 300

Large Pixel Detector (LPD)

Energy range 5 (1) - 20 keV (25 keV) Dynamic range 10⁵@12 keV Single Photon Sens. Storage Cells ≈ 512

DEPFET Sensor with Signal Compression (DSSC)

Other Detectors

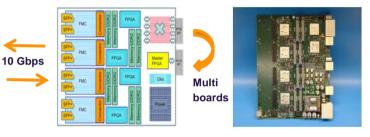
- 0D/1D detectors for high repetition rate applications (e.g. veto, dispersive spectrometers)
- Small areas, low rep. rate, low energy 2D imaging detectors
- Particle detectors (eTOF, iTOF)

Control and DAQ features

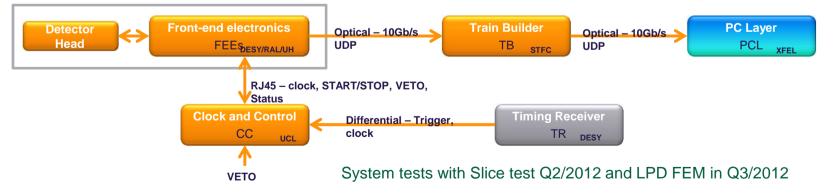
- 2D: custom systems (ASICs, capacitive and digital pipelines), acquire (imited) number of pulses per train; modular design = 16 modules per Mpxl
- 1D: strip detectors
- 0D (diodes...) and Particle detectors: use Fast ADCs or Digitizers

XFEL Common backend 2D detector development

DAQ "clock and control" MTCA.4 sequencing board development

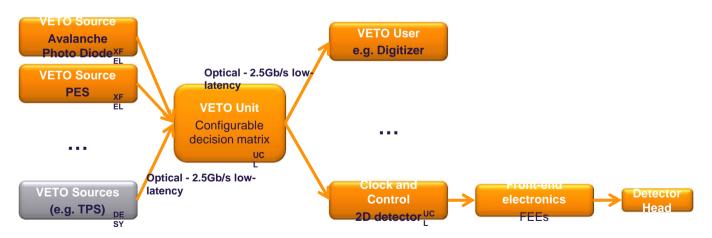

- 16 modules = 1 Mpxl
- One fast signal sequencing link / module (or quadrant)

DAQ "train builder" ATCA readout board development


- collect image fragments from modules (10 Gbps links)
- reorganize into complete trains of pulse ordered images (cross-point)
- data processing in FPGA remove empty, no ROI... frames
- send trains Round-Robin to PC layer (10 Gbps links)
- Multi board train builder installation should satisfy 4Mpxl camera demands in 2015

Prototype sequencer MTCA.4 RTM (UCL)

Prototype train builder ATCA board (STFC)


The train builder board can be reused to readout multiple digitizers, e.g. SQS's TOF and VMI systems, 1D detectors, etc.

XFEL Improving image quality – VETO system

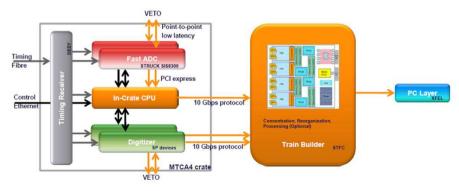
- A VETO system is being implemented to
 - Clear for reuse storage pipeline cells occupied by poor pulse data
 - Reduce amount of data to transfer or save

Centralized VETO unit per experiment

- Processes VETO pulse quality measurements from fast diagnostic and measurement devices
- Trigger decision distributed to VETO users
- All intelligent FEIs (detector and diagnostics) should participate in VETO specification being consolidated

The VETO is a trigger system – if the DataXpress collaboration is approved we will get feedback about veto, rejection and reduction data rates by end of 2012 based on analyzing data from LCLS.

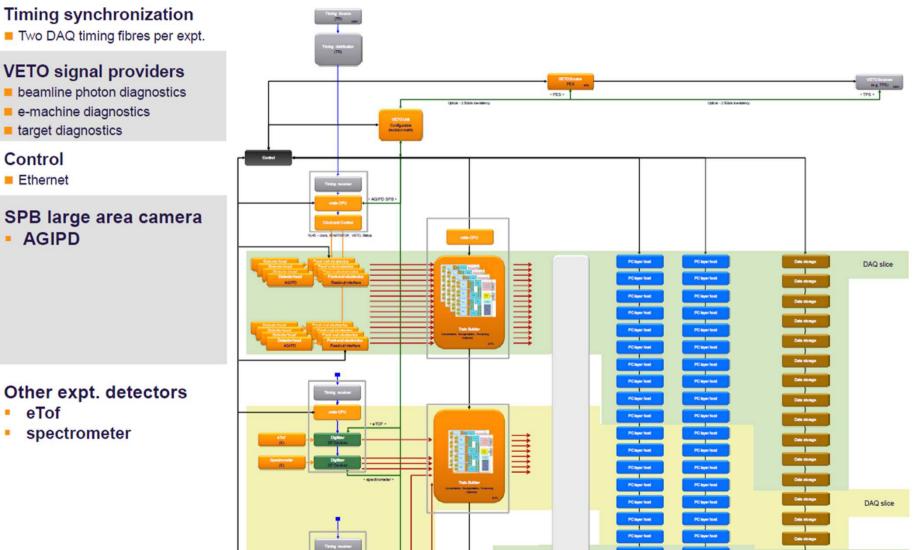
XFEL Digitizer and Fast ADC integration into DAQ


Standards chosen satisfy DAQ and control requirements

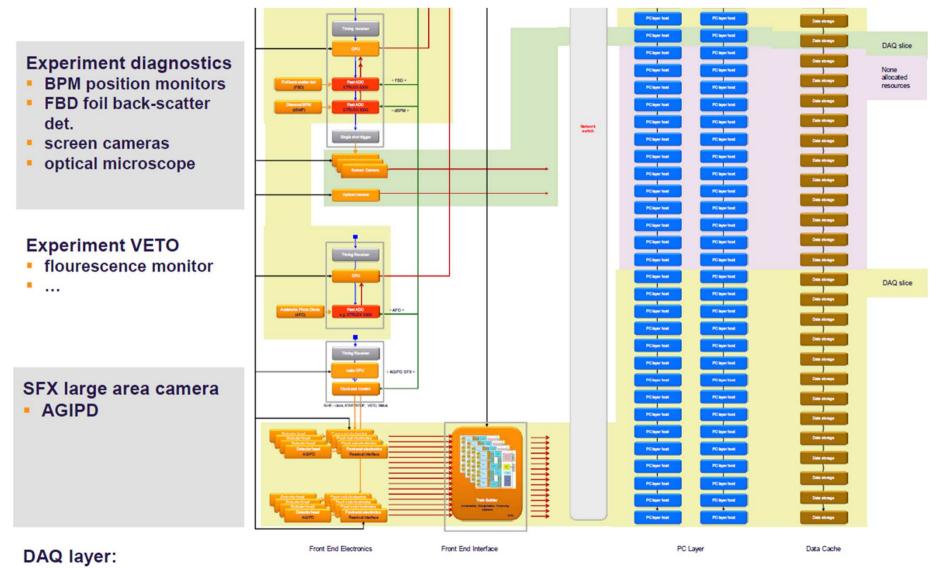
- MTCA.4 crate board: remote operation, RTM signal conditioning
- FPGA processing: data reduction/rejection and VETO generation/receiving (low latency SFP)
- 10Gbps data streaming

Device	Characteristics	Provider	Usage
Fast ADC	125 MHz, 16 bit	www.struck.de	4.5Mz shaped signals: APD, BSD
Digitizer	1-7 GS/s, 14-8 bit	www.spdevices.com	eTOF, iTOF, VMI

DAQ and control integration


- control = over ethernet to crate CPU and on to board via PCIe
- DAQ = to TB (or PCLayer) over board 10Gbps link or via PCIe to CPU 10 Gbps link (in 12 months)
- VETO = via board low latency link

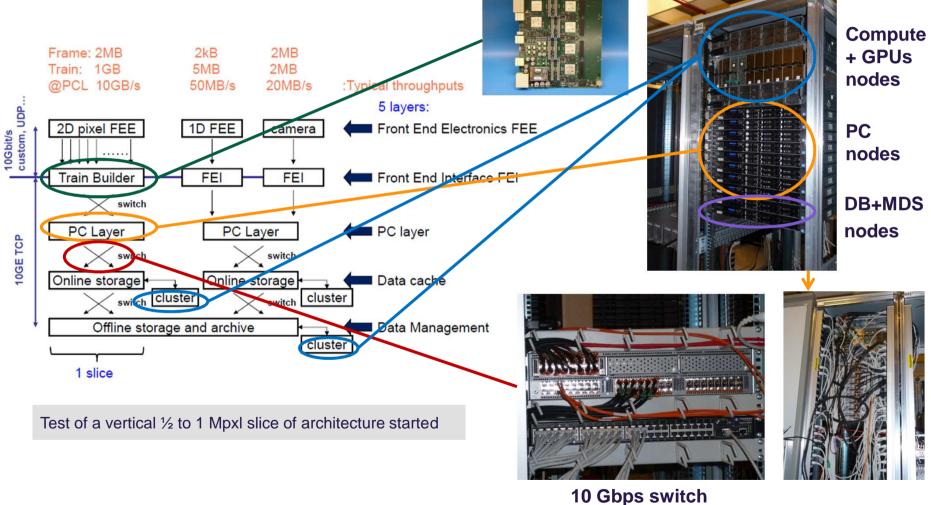
APD Fast ADC test system


European **XFEL** The big picture – DAQ and control part 1

.

XFEL The big picture – DAQ and control part 2

10

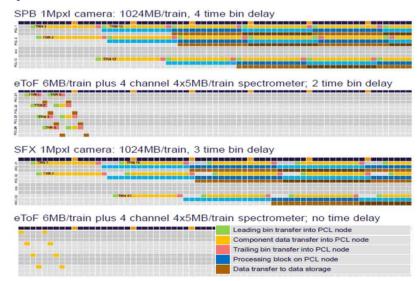


C.Youngman for WP76

European

ACC meeting 17.4.2012 – Controls software session European Test slice – h/w setup in DESY-CC TB prototype Q3/2012

11



XFEL Traffic management

Data traffic management concepts

- Data traffic is DAQ slice specific and clocked by train delivery
- A DAQ slice could be limited to a single detector or many
- Transfers in and out are always full trains of frame ordered data
- A single "leading" bin is used to transfer "metadata" into the slice
- Multiple bins are used to insert large data volumes into the slice
- A single "trailing" bin catches any late data associated with the slice
- Leading and trailing bin traffic should be TCP protocol, other bins can be UDP, iWARP...

Simplified traffic schedule for SPB

XFEL Conclusions

- Considerable steps have been made towards integrating control and DAQ system for experiments, diagnostics and slow control
- Standard interfaces are defined and used to integrate to the machine and between control and DAQ sub-systems
- Prototype developments are reaching the test phase
- Integration within the homogeneous s/w framework is progressing

Thank you for listening !