LLRF ADC Firmware structure and high level software concepts

Christian Schmidt for the LLRF team 1st Meeting of the European XFEL Accelerator Consortium 17.04.2012

Motivation and background

Design example ADC board

- Block diagram
- Measurements
- Summary and outlook

Motivation and general comments

- Reliable and easy maintainable, performance must be reached
- Generic to use at different systems with different properties
 - Individual Blocks can be modular plugged together depending on application needs
 - If possible use switches or dividers to adjust eg. for different frequencies
- Structuring must be extendable in future without major upgrade
 - Having margin in FPGA space, server CPU usage, communication bandwidth
- > Transition stage in a new project
 - Iterations needed / adaptation to new requirements
- > Functionality tests, benchmarks, setup procedures
- Design concept essential
 - Interface definition and communication bandwidth estimation
 - Estimation of FPGA space, server layout and subsystem integration

LLRF signal topology for XFEL main linac

ADC board functional block diagram

Filtering unwanted signal contributions

Measurements of beam induced transients

 Use delay for alignment of individual cavity transient readouts for e.g. VS calibration, beam loading compensation

Controller (Master) functional block diagram

Summary

Seneric software structure for multi-purpose application

- Maintainability
- Programming effort
- > ADC firmware layout for LLRF
 - Modularity and preprocessing
 - Communication / control of further sub devices
- Currently transition of controller firmware to uTC
- Setup / Test / commissioning of a full LLRF station

Thanks for you attention

Pzt function block diagram

Filtered cavity transient response

- > Typial step down in amplitude done for FLASH2 operation
- > Broadband excitation leads to oscillation in particular of of the 8/9-pi mode
- Impacts from beam loading / pre-limiter setpoint reduction

Calibrated waveguide signals (online)

- Coupling of cavity pairs on a waveguide branch
- Directivity of the couplers
- Required for virtual probe and detuning computation
- Should be implemented on uTC signal entry level

- 16 cavities for 1 uTC board, 9MHz
- Estimation: 256 DSP slices
 - One matrix for 4 channels
 - Optimization might further reduce size
 - 40% of FPGA size !!

 V_{fI} V_{fQ} V_{rI} V_{rQ} V_{fI} V_{fQ} V_{rI}

