Arrival Time Histogramming Unit.

Requirements and concept

Marek Penno Dr. Holger Leich

Workshop on Fast Beam Conditions Monitoring at DESY Zeuthen 2012/02/01

Outline.

>Objective

Detector Subsystem BMCF1

Provide Histogram and Postmortem Data

- > Requirements
- > Hardware Concept
- > Summary

Objective.

> **BCMF1**, a subsystem of the CMS Beam Condition Monitor System

- designed for fast flux monitoring measuring bunch-by-bunch both beam halo and collision products
- Iocated inside the CMS pixel detector close to the beam-pipe

Objective Goals.

- Extend existing DAQ system
- Provide continuous beam particle distribution in real time
- Provide post-mortem data after beam abort

Objective – Reconstruct Particle Distribution.

Reconstruct particle distribution in the accelerator ring

- Monitor the discriminated signals (events) from the detectors of BCM1F
- Monitor detector events in respect to LHC bunch clock and orbit clock
- Acquire time of the orbit trigger and the time of the detector events
- → Reconstruct the distribution of particles in the accelerator ring
- Example Data from the existing DAQ System, TDC Modules:

Source: Elena Castro, FSP CMS Workshop, Beam Condition Data Analysis with BCM1F

Outline.

> Objective

>Requirements

- Interfaces
- Acquisition
- > Hardware Concept
- > Summary

Requirements – Interface for data acquisition.

> 8 detector input channels

- ECL Type, optional 120 Ohm Termination, common ground
- Sample Rate: 6.25ns
- supplementary input channel "Bunch filled"
 - Sample Rate: <= 25ns</p>
- supplementary reserve input channel
 - Sample Rate: <= 25ns</p>
- > Orbit Trigger input
 - NIM, 50Ohm termination
- Bunch Clock input
 - NIM, 50Ohm termination
- > Beam abort input signal
 - NIM, 50 Ohm termination

Requirements – Further Interfaces.

> VME Slave

- Communication with VME Controller, access the control registers
- > Network
 - Communication with DAQ System, transfer of acquired data
- > USB Slave
 - Optional communication with DAQ System
- > RS322
 - Administrative Interface
- > JTAG
 - Programming Interface

Requirements – Data Acquisition.

Post Mortem Data

- Filled continuously with event data from the detector inputs
- Organized as ring buffer → outdated data being overwritten
- Acquisition is stopped at beam abort event
- Postmortem Data contains detector event data of the last 50 orbits
- Software reads out post mortem data on beam abort

> Histogram Data

- For each channel (8 detector + 2 supplementary)
- Statistical overview of count of events in respect to N orbits
- Sample Rate: 6.25ns = 160 MHz = 4 times bunch clock (40 MHz)
- Each orbit: 3564 bunch timeslots \rightarrow 14256 bins in histogram per channel
- → Monitor all possible bunches and the "abortion gap"

- Bin's width: 16 Bit \rightarrow 65535 orbits = 5839.1ms timespan
- Double Buffered System: continuous data acquisition → no information loss
- Transition sensitive sampling or synchronous sampling:

Outline

- > Objective
- > Requirements

Hardware Concept

> Summary

Hardware Concept – ATHU Bird eye view

Hardware Concept – Block Schematic.

Single FPGA solution

- Ext. RAM for post mortem data
 - Reduced FPGA memory requirements
- Int. FPGA ram for histogram data
 - Fast read and write requests with in 6.25ns
- Single Board Computer
 - Data readout
 - Acquisition control
 - Network communication

Hardware Concept – Detailed Implementation Schema.

Hardware Concept – Operation States.

Summary.

- Concept of a VME Module
- Extending the existing DAQ system
- > 10 Channel, Sample Resolution <u>6.25ns</u>
- Continuous beam particle distribution in real time
 - Histogram function: 14256 Bins a 16 Bit per channel
 - Continuous data acquisition, <u>no information loss</u>
- Post-mortem data after beam abort
 - 50 orbits detector event data
- Communication via VME Bus, Network and USB

Example of SBC with FPGA

Marek Penno, Dr. Holger Leich | Arrival Time Histogramming Unit - Requirements and Concept | 2010/02/01 | Page 17

- > CPU: AT91SAM9G20
- RAM: 128MB, FLASH: 512 MB,
- Static Memory Interface to FPGA (~ 20MB/sec)
- > USB 2.0, Ethernet 10/100MBit, SD Card Drive as persistent Memory

