
EUROPEAN M IDDLEWARE INITIATIVE

EMI JRA1 CO MPU T E CL IE N T

CO N SO L ID AT IO N AN D HAR M O N IZ AT I O N

EMI DOCUMENT

Document identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt

Date: 09/05/2012

Activity:

Lead Partner: JUELICH

Document status: Draft

Document link:

Abstract:
This document is a proposal for client consolidation in the compute area.

Editor: Björn Hagemeier (JUELICH)

Contributors: Alvise Dorigo (INFN PD)

Andre Merzky (LSU)

Zsombor Nagy (NIIFI)

Zden k Šustr (CESNET)ě

Antony Wilson (STFC)

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 1 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

Copyright notice:

Copyright (c) Members of the EMI Collaboration. 2012.

See http://www.eu-emi.eu/about/Partners/ for details on the copyright holders.

EMI (“European Middleware Initiative”) is a project partially funded by the European Commission. For more

information on the project, its partners and contributors please see http://www.eu-emi.eu.

This document is released under the Open Access license. You are permitted to copy and distribute verbatim

copies of this document containing this copyright notice, but modifying this document is not allowed. You are

permitted to copy this document in whole or in part into other documents if you attach the following reference to

the copied elements: "Copyright (C) 2010. Members of the EMI Collaboration. http://www.eu-emi.eu ".

The information contained in this document represents the views of EMI as of the date they are published. EMI

does not guarantee that any information contained herein is error-free, or up to date.

EMI MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING THIS DOCUMENT.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 2 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

Document Log

Issue Date Comment Author / Partner

1 04/05/12 Initial import into document
Björn Hagemeier /

JUELICH

2

3

Document Change Record

Issue Item Reason for Change

1

2

3

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 3 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

TABLE OF CONTENTS

Table of Contents
SURVEY OF EXISTING CLIENTS...5

LIST OF EXISTING CLIENTS...5

FEATURES.. 6

PLATFORMS.. 6

EXISTING SUPPORT FOR EMI-ES.. 6

USERS... 7

DEVELOPER EFFORTS AND POST-EMI PLANS..7

DEFINITIONS.. 7

ASSUMPTIONS.. 8

SCENARIOS..9

SCENARIO A: NEW CLIENT AND LIBRARIES BASED ON SAGA... 9

SCENARIO B: THE HILA API AND THE ARC CLI..10

SCENARIO C: THE LIBARCCLIENT API AND THE ARC CLI..11

OTHER SCENARIOS... 12

API COMPARISON... 14

SUPPORTED OPERATIONS... 14

PROBLEMATIC OPERATIONS..14

RECOMMENDATION.. 16

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 4 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

1. SURVEY OF EXISTING CLIENTS

We conducted a survey of existing clients for compute and related interfaces to set the ground for the
consolidation and harmonization activity. The effective date of the survey is the EMI-2 release due at
the end of April 2012. The full survey can be found in the EMI wiki1, and is summarized below.

1.1. LIST OF EXISTING CLIENTS

Clients can mean three different things: libraries, CLIs (Command Line Interfaces) or GUIs (Graphical
User Interfaces). UNICORE has its URC (Unicore Rich Client) which is a GUI for accessing
resources with Unicore Atomic Services interface, and other communities also developed different
GUIs to access ARC and CREAM resources. But due to the lack of time and resources the GUIs are
excluded from the following discussion.

Libraries

(UNICORE) uas-client Java library providing access to Unicore Atomic Services.

(UNICORE) bes-client Java library providing access to BES resources.

(UNICORE) emi-es-client Java library providing access to EMI-ES resources.

(UNICORE) HiLA
Java library which provides a high-level uniform API on top of
the previous three libraries.

(ARC) libarcclient
C++ library which provides a high-level API to access EMI-ES,
BES, Classic ARC (gridftp), WS ARC (extended BES), and
CREAM resources.

(CREAM) EMI-ES library C++ library which provides a high-level API to access EMI-ES

SAGA

SAGA is a standardized API for developing distributed applica-
tions that can run on Grid and Cloud infrastructure. It has im-
plementations in C++, Java and Python. None of them has
support for EMI-ES currently.

Table 1: Available libraries in the compute area

1 https://twiki.cern.ch/twiki/bin/view/EMI/EmiJra1T2ComputeClientSurvey

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 5 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

CLIs

UCC A production CLI using the uas-client and bes-client libraries.

HiLA Shell A demo CLI which uses the HiLA library (thus capable of accessing
EMI-ES resources)

ARC CLI A production CLI using the libarcclient library (thus capable of ac-
cessing EMI-ES resources)

CREAM EMI-ES CLI A prototype CLI using the CREAM EMI-ES library (thus capable of
accessing EMI-ES resources)

CREAM CLI A production CLI providing access to CREAM resources.

WMS CLI A production CLI providing access to the WMProxy service.

L&B A production CLI providing access to the Logging and Bookkeeping
services. L&B is a monitoring tool and not for job submission or
management.

Table 2: Available CLIs in the compute area

The L&B CLI has been considered here for reasons of completeness only. It will not be mentioned in
any of our scenarios below, because support of EMI-ES in L&B would only make sense if the WMS
would adopt EMI-ES at the same time.

1.2. FEATURES

All clients are capable of job submission and management, and they have support for moving input
and output data. Only the UNICORE clients have strong workflow support. The ARC Client does
brokering on the client side, whereas the UNICORE clients and the WMS clients send jobs to a
brokering service. The JSDL job submission language is supported by all of the clients, and the ADL
is of course supported by all of the EMI-ES-capable ones. The UCC supports UNICORE’s own
JSON-based job descriptions and workflow descriptions. The ARC client has additional support for
XRSL and JDL. The ARC client also has built-in support for handling credentials (creating proxies,
communicating with MyProxy and SLCS services).

1.3. PLATFORMS

The UNICORE clients are written in Java, which makes them run on almost all platforms. The ARC
client runs on all major platforms including Mac OS X and Windows. The CREAM, WMS and L&B
clients run on specific versions of Linux only.

1.4. EXISTING SUPPORT FOR EMI-ES

The UNICORE developers have implemented a native client library for EMI-ES, and based on this a
backend for the HiLA API has been implemented, which automatically exposes EMI-ES functionality
in any code based on HiLA, e.g. the HiLA Shell.

The CREAM developers have implemented a gSOAP based prototype library and a CLI using it to
access EMI-ES.

The ARC developers have implemented plugins for the libarcclient library to access EMI-ES
resources, which made the current ARC CLI capable of submitting, managing and querying jobs on
EMI-ES computing elements.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 6 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

All three of the solutions above are considered as working but not mature. There are still issues with
the specific interpretation of the EMI-ES specification. Some more work is needed to make all the
client implementation be able to speak with all the server implementations and thus reach full
interoperability.

The WMS and the L&B have no plans currently to include any EMI-ES support in the near future.

1.5. USERS

The HiLA library currently has only a handful of users, while hundreds use the UCC. The CREAM
CLI and the WMS CLI are used by approximately a thousand users combined.. The CREAM EMI-ES
client is new, has no user base. The ARC CLI is used by approximately a thousand users, and even
more use the libarcclient indirectly via some application on top of it.

1.6. DEVELOPER EFFORTS AND POST-EMI PLANS

UCC and HiLA both has approximately 0.2 FTE development effort, and after EMI they plan to
continue development as it was before EMI. The CREAM CLI and the WMS CLI both has 0.5 FTE
development effort currently, the post-EMI plans are not clear yet. The ARC CLI and the libarcclient
has now approximately 1.5 FTE development effort, and after EMI the NorduGrid collaboration will
maintain it.

2. DEFINITIONS

API Application Programming Interface. For the purpose of this document, we consider an
API to be language-independent, i.e. the same can be implemented for multiple program-
ming languages.

CLI Command Line Interface. A user interface that a user employs to initiate certain actions
in a system. The means of interaction is the command line.

GUI Graphical User Interface. A user interface that allows users to interact with electronic
devices with images rather than text commands2.

library A library is a set of functions implementing a given API. The API is considered to be
the official interface of the library that is exposed to the users. Additional functionality
that the library may use internally may be part of the library.

2 http://en.wikipedia.org/wiki/Graphical_user_interface

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 7 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

3. ASSUMPTIONS

No process should be followed without knowing its guiding principles. Some of these are mentioned
here to inform the reader why certain decisions were taken or why some potentially obvious scenarios
have been left out from the discussion.

A major restriction of the consolidation activity was that any proposal from this work must be
sufficiently small, such that product teams will be able to implement it by the end of 2012.

Some of the scenarios we considered involved code-wrapping across programming languages. That is,
C++ code would have been used from within Java code. This approach can be dangerous, as errors in
the C++ code can result in fatal crashes of the Java Virtual Machine (JVM). Therefore, we decided to
avoid scenarios involving this kind of code wrapping.

It was generally agreed upon by members of the task force that the scenarios proposed below must
support API or library access to the middleware services. Thus, scenarios only providing CLI access to
the middleware were considered insufficient and were not listed below.

In addition to this, a common API definition across multiple programming languages is favored over
the plain provision of individual APIs for each language. Scenarios that did not provide a common
API have also been ruled out right from the start.

There are strong indications that neither the UNICORE Rich Client (URC) nor the UNICORE
Commandline Client (UCC) will integrate EMI-ES functionality. The reason for the URC not doing so
is that has never been part of the EMI project and is purely developed and maintained outside of the
project's scope. The UCC product team is very small and merely sufficient to maintain the client, but
not to implement new features.

The HiLA Shell, which is part of EMI as a CLI and can actually access EMI-ES endpoints, has never
been intended to be used in production. It was incepted as a demonstrator application to showcase the
use of the HiLA API. Developers interested in using the HiLA API will find a comprehensive source
of examples in the individual HiLA Shell commands’ implementations. In a similar way, the SAGA
CLI has been intended for demonstration purposes only. Therefore, wecannot recommend its use for
production environments at the moment. Substantial work would be required to enhance either one of
the above mentioned CLIs to become production ready.

Besides the specific UNICORE components like the URC, we generally ruled out graphical clients as
well as workflow functionality. This was done for several reasons. First of all, no GUI client product is
part of the EMI project. Secondly, we considered it enough of a challenge to implement only the
library and CLI clients until the end of 2012. Therefore, the above mentioned functionality is out of
scope.

ARC middleware developers would like to settle down with only one interface for their Computing
Element. The EMI-ES interface could become the interface of choice for them. This would result in
eventually phasing out their GridFTP and WS (extended BES) based submission interfaces. This
increases the sustainability of the EMI-ES support in the ARC CLI and library.

The current CREAM EMI-ES client is using gSOAP for handling web service communication, but
gSOAP is not seen as a preferred option because of licensing problems of future versions and also
because of the complexity of working with the generated code.

The part of the WMS responsible for submitting jobs to the CE, would happily adopt a C++ API for
EMI-ES activity submission. This could be implemented by a library from the ARC middleware
providers.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 8 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

4. SCENARIOS

In the following paragraphs, we list scenarios that we consider valuable enough to be taken into
consideration. We start with the most promising three scenarios that we named A, B, and C. Following
that, we provide summaries of additional scenarios that we find less promising.

4.1. SCENARIO A: NEW CLIENT AND LIBRARIES BASED ON SAGA

CLI API C++ library Java library Python library

new based on the
existing SAGA

clients

SAGA specifica-
tion

SAGA C++ jSAGA Bliss (pure Python
SAGA implemen-

tation)

Description

In this scenario, the SAGA specification is used as the definition of the API. There are SAGA
implementations for C++3, Java4 and Python5, all of them implement the SAGA API, or at least some
parts of if, and all of them use adaptor plugins to access services with different interfaces. They do not
share these plugins, which are written respectively in C++, Java and Python. Thus, an EMI-ES plugin
is written for each implementation. Then one of them will be chosen for the purposes of the CLI, and a
new CLI is written using that library. There are existing command line clients which can be used as a
starting point. Probably a Python CLI would be the easiest, fastest option.

Advantages

SAGA has a well-defined API fully described in a formal way, developed and refined for several
years. It is also extensible, if there would be some EMI-ES specific requirements which are currently
not supported by the SAGA API. It is implemented in C++, Java and also has a new pure Python
implementation, so only the adaptor plugin has to be written (although a separate one for each
language). The library provides several built-in functionalities, e.g. asynchronous calls, session
handling, etc.. Adaptor development is relatively simple. The CLI using the SAGA library can use the
existing adaptors too, e.g. BES, Globus, Condor, SSH, GSISSH, PBS, etc., and other existing tools
using SAGA, like a pilot job framework or a MapReduce implementation, can then also use EMI-ES.

Disadvantages

The adaptors have to be separately written for all three languages. A completely new CLI needs to be
written, possibly based on an already existing one. The SAGA abstraction does not support the full
feature set of EMI-ES (e.g. no support for NotifyService, delegation is not straightforward), which
means that some compromises or extensions are needed. The SAGA C++ code base is relatively
heavy, has long-standing bugs, and depends on the Boost6 framework, which according to the SAGA
developers makes it very difficult to maintain and to port to different platforms. The new Python
implementation (Bliss) is new and incomplete. The SAGA project has insufficient manpower to
maintain, package or deploy a new adaptor, so that effort should be also partially provided by EMI,
which makes it unclear what happens after the EMI project ends.

3 http://www.saga-project.org/
4 http://grid.in2p3.fr/jsaga/
5 https://github.com/saga-project/bliss
6 http://www.boost.org/

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 9 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

Consequences

In this scenario none of the existing CLIs and libraries can get new developments within EMI, all the
effort is put into the EMI-ES SAGA adaptors and the new CLI, which will be offered as the official
EMI libraries and CLI.

Scenario A: New client and

libraries based on SAGA
New development allowed

in project year 3

UCC no

HiLA Shell no

WMS CLI no

CREAM CLI no

ARC CLI no

libarcclient no

HiLA no

SAGA adaptors yes

New CLI yes

4.2. SCENARIO B: THE HILA API AND THE ARC CLI

CLI API C++ library Java library Python library

ARC CLI HiLA new library or the
libarcclient modi-

fied

HiLA SWIG-wrapped
C++

Description

In this scenario the ARC CLI is provided as the official EMI CLI. The API of HiLA is documented
and HiLA itself is offered as the official Java library. In order to have a uniform API across languages
either a new C++ library needs to be written which has the same API as HiLA, or the libarcclient
needs to be changed or extended to support the same API. The Python library then can be created with
wrapping the C++ library with SWIG (as it is done currently in libarcclient).

Advantages

The ARC CLI is a production-quality CLI with hundreds of users. It provides access to resources with
the BES interface, and also to CREAM resources and to classic (gridftp) and WS (extended BES)
ARC resources. It has credential handling and data staging capabilities. HiLA provides a native Java
library with a simple and clean interface, and the same interface is provided by the C++ library. If the
libarcclient is modified (instead of writing a new C++ library) then it provides all the functionality of

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 10 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

the ARC CLI mentioned before. If a new C++ library is written, that could be more lightweight, easier
to make stable and maintain than the libarcclient.

Disadvantages

The HiLA API does not support the full feature set of EMI-ES (e.g. no resource info, no bulk
operations, no delegation), so compromises or extensions are necessary. In case of a new C++ library:
introducing a new component; limited functionality compared to the libarcclient (the libarcclient
already has capability to submit to EMI-ES plus several other interfaces, including data staging and
credential handling), thus questionable sustainability. In case of modifying the libarcclient: the ARC
CLI has to be modified too, it breaks backward compatibility, all the existing users of the libarcclient
are forced to adapt their applications, at least if they do not want to or cannot stick to the already
existing versions.

Consequences

In this scenario the following components can get new development: the ARC CLI (which is the
official EMI CLI), the HiLA (which is the official Java library), the libarcclient (if it is modified to
have the same API as the HiLA then it is the official C++ library which needs to be improved to
provide stable EMI-ES access; if a new C++ library is written, the libarcclient still needs to get new
development because the ARC CLI uses it to access the EMI-ES resources), and the new C++ library
(in case of choosing that option).

Scenario B: The HiLA

API and the ARC CLI
New development allowed in

project year 3

UCC no

HiLA Shell no

WMS CLI no

CREAM CLI no

ARC CLI yes

libarcclient yes

HiLA yes

new C++ library yes (in case of a new C++ library)

4.3. SCENARIO C: THE LIBARCCLIENT API AND THE ARC CLI

CLI API C++ library Java library Python library

ARC CLI libarcclient libarcclient new library or
HiLA modified

SWIG-wrapped
C++

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 11 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

Description

In this scenario the ARC CLI is provided as the official EMI CLI. The API of the libarcclient is
documented and the libarcclient itself is offered as the official C++library. In order to have a uniform
API across languages either a new Java library needs to be written which has the same API as the
libarcclient, or the HiLA needs to be changed or extended to support the same API. The Python library
can be created with wrapping the libarcclient with SWIG (as it is done currently in libarcclient).

Advantages

The ARC CLI is a production-quality CLI with hundreds of users. It provides access to resources with
the BES interface, and also to CREAM resources and to classic (gridftp) and WS (extended BES)
ARC resources. It has credential handling and data staging capabilities. The libarcclient is the library
used by the ARC CLI to provide all these features. The API is uniform across languages. If the HiLA
is modified (instead of writing a new Java library) then it provides additional functionality (e.g.
accessing UAS resources). The HiLA is a relatively new component, it has less users than the
libarcclient, so there is less resistance to changing it.

Disadvantages

The libarcclient API does not support the full feature set of EMI-ES (e.g. no fine-grained control of
the resource and job information query, no support to pause an activity), so compromises or extensions
are necessary. In case of a new Java library: introducing a new component; limited functionality
compared to the HiLA (which already has capability to submit to EMI-ES plus other interfaces), thus
questionable sustainability. In case of modifying the HiLA: it breaks backward compatibility, existing
users of the library needs to adapt their applications.

Consequences

In this scenario the ARC CLI and the libarcclient components will get new development, and either
HiLA or a new Java library depending on the decision.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 12 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

Scenario C: The libarc-

client API and the ARC

CLI

New developments allowed in

project year 3

UCC no

HiLA Shell no

WMS CLI no

CREAM CLI no

ARC CLI yes

libarcclient yes

HiLA yes (in case of modifying it)
no (in case of a new Java library)

new Java library yes (in case of a new Java library)

4.4. OTHER SCENARIOS

Besides the three scenarios described above we considered about a dozen of others. Most of them were
dropped based on the assumptions detailed in the previous section. But some of them need more
explanation.

Scenario: new client, new API, new libraries

This scenario involves specifying a new API most suitable for EMI-ES, implementing libraries in C++
and Java (optionally in python), and writing a new CLI which uses one of the libraries. This solution
can result in a lightweight and stable product having the full feature set of EMI-ES. But the effort
seems too big, and considering the fact that the ARC client can also access EMI-ES resources, the
number of potential users of this new client and library may not be big enough to make it sustainable.

Scenario: ARC CLI, new API, new libraries

In this scenario the ARC CLI is offered as the official EMI CLI, and none of the existing libraries are
provided as official libraries, but a new API is specified and new libraries are written in both C++ and
Java. This could result in a lightweight and stable library having the full feature set of EMI-ES. The
sustainability of this solution highly depends on the libarcclient and HiLA adopting the new libraries
in their EMI-ES plugins. Considering the fact that both of these existing libraries already have EMI-
ES plugins, it seems hard to justify why they would adopt the new libraries, which may make the
number of potential users of the new libraries too small to make it sustainable.

Scenario: ARC CLI, new API, adapting the existing libraries

This scenario is similar to the previous in that it offers the ARC CLI as the official CLI, and it also
defines a new API, but instead of writing new libraries, here both the existing libraries are adapted to
the new API. This could mean changing them, extending them (while keeping the old API) or writing
thin adaptors which translate the calls of the new API to the calls to the existing libraries. In each case
this seems to be a much bigger effort than Scenario B and C described above. Whereas it has the

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 13 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

advantage of a new API more suited to the EMI-ES needs, it will still be impossible to provide this
scenario without changing existing libraries. This is because existing libraries may not provide all
features of EMI-ES and thus will have to be adapted to the new use cases. This makes Scenario B or C
preferred to this one.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 14 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

5. API COMPARISON

In the following, you will find a detailed comparison of EMI-ES operations and methods available in
the existing client libraries. Five client implementations and APIs have been compared to each other.

• Arc::EMIESClient (internal class used by libarcclient)

• libarcclient

• HiLA API

• SAGA

• gLite ES C++ Client Library

All of these but SAGA can be understood as library implementations, i.e. they implement the actual
functionality and can access EMI-ES services today. SAGA is an abstract API for which multiple
adaptors are available. Due to the lack of an adaptor for EMI-ES in SAGA, we rather considered if and
how SAGA concepts can be mapped onto EMI-ES, which would be made available as a new adaptor.

5.1. SUPPORTED OPERATIONS

In order to provide the information contained in the following sections in a rather condensed manner,
we will first describe which operations are generally supported and then go on to the more problematic
ones that need attention in one or several of the implementations.

The operations mostly supported by all implementations are:

• CreateActivity

• GetActivityStatus

• GetActivityInfo

• PauseActivity

• ResumeActivity

• CancelActivity

• WipeActivity

• ListActivities

We explicitly state ‘mostly supported’ here, as many of the existing interfaces are not defined for bulk
operations as supported by EMI-ES. Therefore, most APIs only support the invocation of these
operations on individual activities. The SAGA API is an exception, as it defines bulk operations.
These would need to implemented accordingly in an EMI-ES adaptor. The libarcdata API also
supports bulk operation, however it is not yet implemented internally.

5.2. PROBLEMATIC OPERATIONS

This section documents those operations that are problematic in that not all current client
implementation implement them.

GetResourceInfo

Whereas HiLA and the gLite ES C++ client library do not have any support for GetResourceInfo,
SAGA and the ARC libraries support this operation.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 15 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

QueryResourceInfo

QueryResourceInfo is supported only by SAGA by means of the ServiceDiscovery API and
InformationServiceNavigator API. As described above, this support is potential only, as it would need
to be mapped to concrete queries by an adaptor.

NotifyService

This is implemented by all but SAGA. The SAGA API does not provide this. The libarcclient
implementation does this automatically during job submission, i.e. the user does not have any means
to manually upload any additional data before notifying the service.

RestartActivity

This operation has only been implemented by Arc::EMIESClient and the gLite ES C++ Client library.
The other client implementation do not support it.

InitDelegation, PutDelegation, GetDelegationInfo

The operations are fully covered by the ARC clients, which implement them as part of the submission
process. The user does not explicitly init, put, or get a delegation. It is also covered by the gLite ES C+
+ Client library. SAGA and HiLA would implement this functionality in the same way ARC did it, i.e.
making the sequence of init and put delegation part of the submission process. As a matter of fact, the
library that has been used to implement the HiLA EMI-ES plugin does already provide this
functionality.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 16 / 17

EMI JRA1 COMPUTE CLIENT CONSOLIDATION AND HARMONIZATION

Doc. Identifier: EMI-DOC-JRA1-Client_Consolidation_v1.0.odt
Date: 05/09/2012

6. RECOMMENDATION

After careful evaluation of the available options, and taking into consideration all boundary
conditions, task force members have come to the conclusion that “Scenario C: The libarcclient API
and the ARC CLI” as described above is the most promising one.

The scenario involves the ARC CLI, libarcclient API and library. The API will also be adopted for the
Java programming language.

This will have the following consequences for the products:

• The UNICORE Commandline Client (UCC) will only be maintained during the remaining
time of the EMI project. No new developments, in particular those related to the adoption of
EMI-ES, will be accepted.

• HiLA Shell will not receive any new developments either. It will be maintained during the
course of EMI. Naturally, if the HiLA library receives new developments, it is expected to
take little effort to follow these changes in HiLA Shell. Thus, the additional features would
become available.

• In case the decision for the Java library targets a new one, this will have to be developed. In
that case, the HiLA library will not receive any new developments, but merely be maintained.

• The ARC CLI, which is production ready and widely used, will follow the implementation of
EMI-ES in libarcclient and be adapted as necessary to offer all features of EMI-ES. It will be
maintained and new developments are possible.

• The CREAM and WMS clients will not receive any new development, but merely be
maintained.

INFSO-RI-261611 2010 © Members of EMI collaboration PUBLIC 17 / 17

	1. Survey of existing clients
	1.1. List of existing clients
	1.2. Features
	1.3. Platforms
	1.4. Existing support for EMI-ES
	1.5. Users
	1.6. Developer efforts and post-EMI plans

	2. Definitions
	3. Assumptions
	4. Scenarios
	4.1. Scenario A: New client and libraries based on SAGA
	4.2. Scenario B: The HiLA API and the ARC CLI
	4.3. Scenario C: The libarcclient API and the ARC CLI
	4.4. Other scenarios

	5. API Comparison
	5.1. Supported operations
	5.2. Problematic operations

	6. Recommendation

