

Security Token Service (STS)

Henri Mikkonen

Helsinki Institute of Physics

4th EMI All-Hands Meeting 8.-10.5.2012 Hamburg, Germany

EMI is partially funded by the European Commission under Grant Agreement RI-261611

Content

- Terminology
- Functionality
- (Some) STS Use Cases
- Server-side Architecture
- Current state of the implementation
- Requirements for the clients
- Discussion

Terminology

- Security Token?
 - –« A collection of statements (claims) about a user or a resource »
 - Anything that can be attached into a Web Service (SOAP) message
 - Example token formats: X.509 certificate, SAML assertion, Kerberos ticket, Username/Password, ...
- Security Token Service?

–« A Web service used to issue, renew, validate and cancel security tokens »

STS ISSUE Functionality Overview

- Transforms the security token into another security token
 - 1. Validates the incoming security token
 - 2. Aggregates the required information & issues the new security token
 - Possibly by exploiting external sources / authorities
 - 3. Includes the new security token into the response message
- Establishes a trust relationship between different application domains

Username/Password to X.509

09/05/2012

SAML assertion to X.509

Henri Mikkonen @ 4th EMI All-Hands meeting

EMI INFSO-RI-261611

SAML assertion to X.509

09/05/2012

SAML assertion to X.509 proxy

09/05/2012

SAML assertion to X.509 proxy

09/05/2012

- STS transforms an existing security token into another security token
 - -Supported incoming formats: X.509, X.509 proxy, Username/Password, SAML, Kerberos
 - -Supported outgoing formats: X.509, X.509 proxy, SAML
- STS is a SOAP-based Web Service
 - Any party capable of producing specified request messages and understanding response messages can act as a client
 - Command-line clients, Web portals, Grid resources, ...

Server-side Architecture (1/2)

OpenSAML3 is used for producing and consuming the protocol messages The *green* components are / will be provided by Shibboleth 3 Identity Provider The *yellow* components are currently being implemented in the STS project

09/05/2012

Server-side Architecture (2/2)

- Three outgoing token formats promised in the EMI plans
 - SAML 2.0 assertion generation is provided "internally" by Shib IdP
 - The CMP protocol is initially supported for the Online CA connection
 - The VOMS token generation is very close to voms-proxy-init functionality
 - Some building blocks already seem to exist for Java

12

State of the Implementation

- OpenSAML3 and Shib IdP v3 starts to have most of the required functionality implemented
- X.509 token generator using the CMP protocol is ready
 - -Communication with EJBCA is tested to be working
 - -Others (e.g. MyProxy) may be supported

Client-side – STS Request (1/2)

- Obtain the data needed for creating an incoming security token
 - -Username/Password: simple, prompt the user
 - -X.509: potentially proof of private key possession
 - -SAML Assertion: it must be targeted to the STS
 - Building blocks: SAML delegation for SPs and the ECP profile for client tools
- Encode the security token

-WS-Security namespace

Client-side – STS Request (2/2)

- Generate the request message
 - -SOAP envelope, WS-Security token in the header, WS-Trust RST-message in the body
 - Optionally data related to the security token to be issued
 - –Eg. Public key to an X.509 certificate or a list of VO roles desired to be included in a VOMS proxy
 - Optionally XML-Signature and/or XML-Encryption
- Send the request message to the STS —https server-side authentication by default

Client-side – STS Response

- Validate the response message
 - -SOAP envelope, WS-Security in the header, WS-Trust message in the body
 - -Potentially XML-Signature and/or XML-Encryption
- Decode the new security token
 - -Eg. X.509 token is Base64-encoded
 - Potentially combine with some earlier-generated data
 - Eg. the corresponding private key

Client Requirements Summary

- Can be relatively straight-forward..
 - –Eg. Username/Password -> X.509 certificate, using a single User database/directory
- ...but potentially quite challenging
 - –Eg. Using SAML2 assertion as an incoming token, supporting XML-Signature & XML-Encryption
 - Obtaining the SAML assertion have some, potentially additional requirements for the assertion issuers
 - XML-Signature & XML-Encryption are not simple

Thank you! Questions?

Henri Mikkonen <henri.mikkonen@cern.ch>

EMI is partially funded by the European Commission under Grant Agreement RI-261611