CMS pixel resolution study in the DESY test beam telescope

Daniel Pitzl, Alexey Petrukhin, Alexksander Gajos, Hanno Perrey, Armin Burgmeier, Luigi Calligaris, Thomas Eichhorn PSI visit, 25.1.2012

- DESY test beam
- scans
- tilted pixel
- charge sharing
- resolution

DESY II

DESY II test beams

http://adweb.desy.de/~testbeam/

Beam test setup

crossed finger scintillator trigger

> PSI46 test board

D. Pitzl (DESY): CMS pixel in the DESY test beam

beam

EUDet

telescope

collimator

Beam test setup

beam setup

- Crossed finger scintillators (~1 cm² overlap area) as trigger:
 - Mounted on movable support (x-y stage with step motors, remote)
 - CAEN HV supply (-1700 V) outside in the control hut.
 - NIM trigger logic inside interlock, and mirrored in the control hut.
 - HP trigger delay and level adapter (NIM \rightarrow TTL) in control hut.
 - ► Up to 7 kHz scintillator coincidence rate (at 2 GeV e⁺).
- PSI46 test board with single-chip sensor:
 - Mounted after EUDet telescope.
 - Keithley bias voltage supply outside in the control hut.
 - Board control and readout via USB from computer inside interlock.
 - LAN connection to a computer outside in the control hut.
- All worked well...

Scintillator position scan

Scintillators on movable support, remote control, ~ 0.2 mm precision

horizontal FWHM ≈ 30 mm

vertical FWHM ≈ 45 mm

Data taking

- FPGA provides a timestamp for each event bycounting 40 MHz clockcycles.
- Typical scintillator coincidence trigger rate:
 - ► ~6.4 kHz.
- Dips:
 - DESY filling DORIS or PETRA.

DESY II time structure

- DESY II has 80 ms cycle (12.5 Hz):
 - ramp down
 - fill one bunch from Linac II (e⁻) or PIA (e⁺).
 - ▶ ramp up
 - eject to DORIS or PETRA
 - or ramp down and dump
 - wire target is always in
 - test beam gets rate as long as DESY energy is above magnet setting.

one bunch in DESY II

- FPGA counts 40 MHz clock cycles.
- DESY II circumference is 292.8 m
- DESY II has one bunch:
 - repeats every 0.977
 µs (1.024 MHz)
 - 1 turn = 39.067 clocks.
- Problem:
 - FPGA clock was not synchronized to DESY
 - Phase of beam to clock was not fixed.

Single event display

- Sample event:
 - 2 GeV tertiary e⁺
 beam
 - Scintillator trigger
 - Pixel chip 8
 - ▶ -90 V bias
 - optimal clock cycle

Pixel hit map

- 2 GeV e⁺ beam.
- After space and time alignment:
 - ▶ 4 kHz coincidence rate
 - Fill test board memory: 60MB in 3.5 min.
 - ► USB transfer takes another ~2 min.
- One chip fully illuminated.
- Border pixels have double size and rate
- Corner pixels have quadruple size and rate

Pixel hit map

- the same run
- a few dead pixels
- non-uniformity:
 - beam profile,
 - misalignment
 between sensor and
 scintillator,
 - limited trigger region (~1 cm²) just enough to cover 0.8×0.8 cm² chip.

Timing

beam not synchronized to clock

Trigger fine delay scan

- DESY test beam:
 - ► 2 GeV e+
 - Scintillator trigger
- delay scintillator trigger going to the PSI46test board
- 25 ns clock cycle
- Triangular efficiency curve:
 - flat arrival time distribution (clock not synchronized to beam)
- Chose 70 ns as working point.

Trigger delay scan: pulse height spectrum

Trg del = 56.0 ns

56

74

50

Trg del = 68.0 ns

69

cluster charge [ke]

cluster charge [ke]

Tra del = 59.2 ns

59

1400 1200

Tra del = 62.0 ns

Trg del = 80.0 ns

62

D. Pitzl (DESY): CMS pixel in the DESY test beam

cluster charge [ke]

Cluster charge: Ru source vs beam

- Chip 8, -90V bias, Vthr 100
- 2 GeV e+ test beam:
 - Minimum ionizing particles
- Ru 106 source:
 - long tail of stronger ionizing electrons (not fully relativistic).

Pixel detector in DESY test beam

Cluster charge map

ΓOW

- 2 GeV e+ test beam.
- Pixel detector at vertical incidence, fully depleted (-90V bias).
- No magnetic field.
- Test pulse gain calibration applied.
- Trend across the chip
 - test pulse problem?
- Quite uniform along one column.

- 2 GeV e+ test beam.
- Pixel detector at vertical incidence, fully depleted.
- Test pulse gain calibration applied.
- Moyal fit to each column.
- Expect ~25 ke from 285 µm silicon.
- Observe ~8% gain variation across the chip:
 - test pulse problem?
 - check with X-ray source!

Cluster multiplicity vs. bias voltage

- 2 GeV e⁺ beam.
- Cluster efficiency saturates below -80 V:
 - choose -90 V as operating point (Keithley 917)
- Keithley 237 will allow higher bias voltage.

CMS Pixel with EuTelescope

CMS

pixel

PSI test

board

common scintillator trigger

> test beam 21: 2-6 GeV positrons

sliding telescope support

tilting support

-1

Mimosa26 ILC pixel chip

- Mimosa26 monolithic active pixel sensors (Strasburg, 2009):
- thinned to 50 μm,
- $18.4 \times 18.4 \ \mu m^2$ pixel size,
- $1152 \times 576 = 663$ k pixels,
- $10.6 \times 21.2 \text{ mm}^2$ active area,
- binary readout,
- integration time 115 μ s.
 - 0.5 5 pile-up tracks,
 depending on beam rate.

telescope pile up

- Mimosa chips integrate over 115 µs = 115 DESY turns.
- We observe pile up
 - depending on DESY current, beam energy, and collimator opening.

EuTelescope software

step	data.format	constants
 0. EUDAQ data taking: 900s 1. convert, find hot pixels: 70s 	native.bin, e.g. 200 MB 500k triggers raw.lcio, e.g. 200 MB	hotpixel.db
2. clustering: 240s	clusters.lcio, e.g. 400 MB	offset.db
3. hits, coarse align: 250s	hits.lcio, e.g. 600 MB	pre-align.db
4. Millepede alignment: 12s	pede.bin, e.g. 120 MB	align.db
5. track fitting: 270s	tracks.lcio, e.g. 25 MB	C
All steps produce ROOT histograms for monitoring.		

CMS pixel data are merged by reading from a 2nd input stream: requires strict synchronicity between the DAQ systems achieved with common trigger, except for initial event offset (0 - 109).

Telescope point resolution

CMS pixel alignment w.r.t. telescope

- shift in x and y based on peak of residuals: cmssxa, cmsdya
- rotate by ϕ around z based on Δy vs x: cmsdyvsx
- adjust tilt angle α based on Δy vs y: cmsdyvsy
- adjust z shift based on Δy vs θ_{y} : cmsdyvsty
- to be automated:
 - include into telescope MillePede alignment, or
 - part of the general broken line track refit

rotate pixel around z

D. Pitzl (DESY): CMS pixel in the DESY test beam

adjust tilt angle

adjust z shift

z position of CMS pixel w.r.t. telescope plane 2

CMS pixel row resolution

run 2322, 6 GeV, 20° tilt

- Vertical = rows
 - CMS pixel = $100 \mu m$.
- Residual:
 - σ = 9 µm,
 - telescope extrapolation:
 4.5 µm,
 - CMS resolution: 8 μm.

CMS pixel residual distribution

run 2322, 6 GeV, 20° tilt

- cleaning cuts:
 - cluster one pixel away from edges and dead columns,
 - ► | Δx | < 0.15 mm,</p>
 - only 1- and 2-row
 clusters (against δ-rays)
 - cluster charge > 18 ke (against wrong timing),
 - | track angle | < 2 mrad (against scattering).
- **Result**:
 - less tails, more Gaussian

Tilted CMS pixel in the EuTelescope

CMS

pixel

common scintillator trigger

> 6 GeV positrons

PSI test board

THE HTHE

tilting

support

sliding telescope support

cluster size vs tilt angle

cluster size vs impact point and tilt angle

charge sharing: η

 $\eta = (A_1 - A_2) / (A_1 + A_2)$

1-row clusters have η = 1.

ideal: linear η vs y (saw tooth)

deviations: diffusion thresholds trapping delta-rays

charge sharing vs tilt angle

$y_{impact} \mbox{ mod } 200 \ \mbox{ } \mum$: 2 pixels

D. Pitzl (DESY): CMS pixel in the DESY test beam

<eta>

resolution profile vs tilt angle

D. Pitzl (DESY): CMS pixel in the DESY test beam

39

CMS pixel resolution vs tilt angle

PSI visit, 25.1.2012

D. Pitzl (DESY): CMS pixel in the DESY test beam

CMS pixel row resolution vs tilt angle

- 6 GeV, telescope extrapolation uncertainty subtracted.
- row pixels = $100 \mu m$.
- Binary:
 - $\sigma = 100 / \sqrt{12} = 29 \,\mu m$
- Optimal angle 19°:
 - σ = 8 µm.

Efficiency measurement in the test beam

problem: telescope has pile up tracks (115 µs Mimosa readout)

solution: use 2nd CMS pixel chip as timing reference

/

tracking: general broken line fit takes material into account

Summary

- CMS pixel sensor operated in the DESY test beam
- CMS pixel resolution measured as function of tilt angle:
 - Optimal resolution 8 µm at 20°,
 - charge sharing appears almost linear at 20°,
 - can we improve on the simple center-of-gravity cluster algorithm?
 - CMS uses template matching.
- Expect further improvements from the new ROC:
 - Iower threshold
 - less 1-row clusters
 - even better resolution
- Next: efficiency measurement
 - ▶ needs 2nd CMS pixel as timing reference
- We are ready to test the PSI46xdb on single chip modules!

Tilted CMS pixel in the EuTelescope

CMS

pixel

common scintillator trigger

> up to 30° tilt

6 GeV

Fitting peaks with Student's $t = (x - x_0)/\sigma$ = normalized residual.

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi} \,\Gamma(\nu/2)} (1 + t^2/\nu)^{-(\nu+1)/2}$$

f(t) is a normalized
probability density.
Γ function is in PAW, ROOT.

rms/σ for Student's t

 Generate random numbers according to Student's t for different v (see W. Hoermann, Computing 81 (2007) 317).

- calculate rms:
 - for all t. (rms diverges for ν = 1).
 - for |t| < 5. (rms stays below 1.62 for all $\nu \ge 1$).
- Asymptotic value (rms/ $\sigma = 1$) slowly approached.

 RMS/σ