The backtracking algorithm:

The algorithm used to create the following plots works as follows: For any given point \boldsymbol{x} in the detector calculate:

$$h(\boldsymbol{x}, t) = \sum_{i=1}^{N_{\rm PMT}} \Theta(q_i - q_{\rm th}) \sum_{l=1}^{N_{\gamma}} f(t_{il} - t_i^{\rm TOF}, t)$$
(1)

where $N_{\rm PMT}$ is the number of PMTs, q_i is the charge on the $i^{\rm th}$ PMT, $q_{\rm th}$ is the minimal charge for a PMT to be used for the analysis, N_{γ} is the number of hits used per PMT, t_{il} is the $l^{\rm th}$ hit on the $i^{\rm th}$ PMT and $t_i^{\rm TOF}$ is the expected time of flight between the PMT i and \boldsymbol{x} . $f(\Delta t, t)$ is a function used to characterize how well the events cluster. The plotted quantity for each point is:

$$\int_{-\infty}^{\infty} |h(\boldsymbol{x},t)|^2 dt$$
(2)

As long as N_{γ} is small with respect to $q_{\rm th}$ the expected distribution of the PMT-hits around the expected hit time is approximately Gaussian. Hence the first idea was to use a Gaussian distribution with a standard deviation equaling the hits on PMT transit time spread for f. To get a better suppression of random hits, a bipolar function would be beneficial though, as this would allow for cancellation of the signals of random hits. Hence, the derivative of a Gaussian was used for f:

$$f(\Delta t, t) \propto (t - \Delta t) \exp\left[-\frac{(\Delta t - t)^2}{2\sigma_{\text{tts}}}\right]$$
 (3)

The following plots present a few examples showing the capabilities of the algorithm.

parameter	value
number of PMTs	13472
PMT diameter	20"
Winston cones	no
quantum efficiency	100%
light yield	$2000 { m MeV^{-1}}$
dark noise	0 Hz
PMT resolution type	Gaussian
PMT tts	$1\mathrm{ns}$
Scintillator	LAB
optical parameters	standard in simulation rev. 485

Tab. 1: Parameters used in simulation and analysis

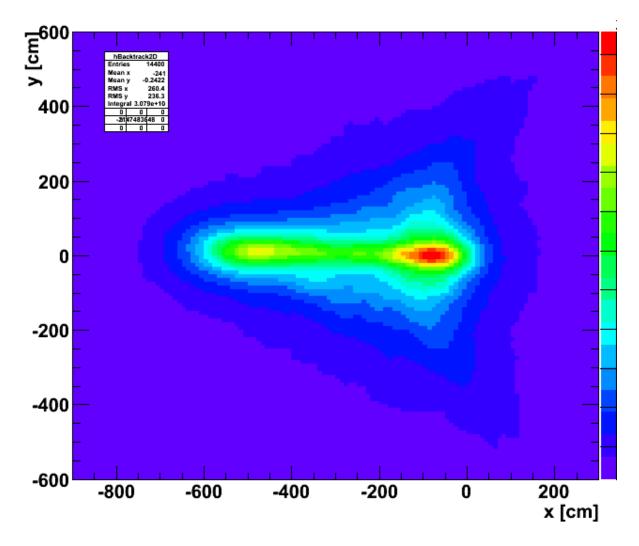


Fig. 1: Results of backtracking for a single 1-GeV muon, taking into account the first three hits on each PMT. The muon was started in the center of the detector and traveled along the negative x-axis.

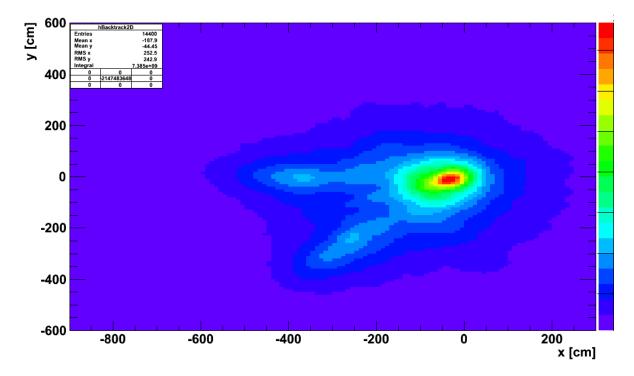


Fig. 2: Results of backtracking for a double muon event, taking into account only the first hit on each PMT. Both muons have an energy of 1 GeV. The directions of the initial muon impulse were (-1, 0, 0) and $\frac{1}{\sqrt{2}}(-1, -1, 0)$.

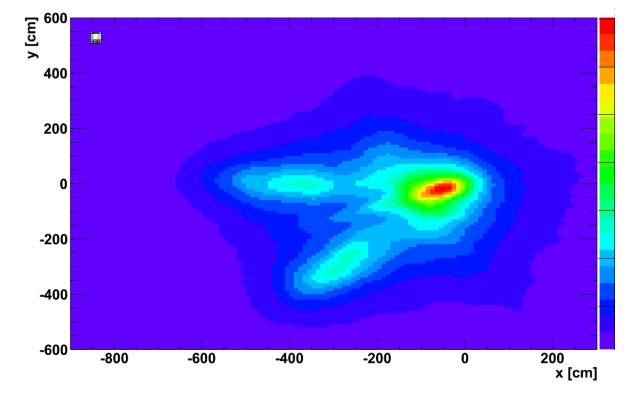


Fig. 3: Results of backtracking for a double muon event, taking into account the first 7 hits on each PMT. Both muons have an energy of 1 GeV. The directions of the initial muon impulse were (-1, 0, 0) and $\frac{1}{\sqrt{2}}(-1, -1, 0)$.