LENA specification document

LENA working group meeting, Hamburg 19 Feb 2012

Lothar Oberauer, Patrick Pfahler, Michael Wurm Universität Hamburg

Specification Document

Table of Contents

- Detector technology
- Detector dimensions and volume
- Tank materials and purity
- Tank instrumentation
- Scintillator properties
- Liquid and gas handling systems
- Detector installation and filling
- Detector operation

Aim: A document serving as a reference, e.g. for technical partners.

New features of the detector design

- Concrete tank
- No buffer: Scintillator touches tank walls
- PMTs mounted to scaffolding
 2m from the detector walls
- Optical separation of active volume (center) and volume behind the PMTs

Idea:

Get rid of the nylon vessel and shield PMTs from scintillation light of external radiation.

Detector dimensions

Item	'	'	25 kt	50 kt
cavern: minimum diameter cavern: estimated height	D _c H _c	mm mm	40000 50000	36000 115000
concrete tank: inner diameter concrete tank: inner height concrete tank: wall thickness	D _{ti} H _{ti} d _{tw}	mm mm mm	36000 40000 600	32000 100000 600
scintillator: total volume scintillator: total mass		10 ³ m ³ kt	40.7 35.0	80.3 69.1
active volume: diameter active volume: height	D _{Is} H _{Is}	mm mm	32000 36000	28000 96000
scintillator: active volume scintillator: active mass		10 ³ m ³ kt	28.9 24.9	59.1 50.8
ratio: active/total			71%	74%
outer water volume: width	d _{h2o}	mm	2000	2000

Tank radius increased (by 1m) to 16m to shield additional radioactivity of the concrete tank.

Concrete tank

- Sandwich tank: concrete between stainless steel sheet
- Option: holes for instrumentation/active leak prevention
- Increased stability against outside pressure, cheap material
- Increased radioactivity level: about 10³ compared to steel
 → dominates PMT activity

PMT support structure

- PMTs are mounted to a steel scaffolding 2m from tank walls
- \rightarrow attenuates γ -rays (²⁰⁸TI) by ~10²
- optical separation of outside volume and inside active volume by opaque, non-reflective plastic sheets
- → OS mitigates Rn-convection (?)
- PMT encapsulation contains an individual buffer volume to reduce activity by >10

New design for optical module

- 12" PMT favored
- Light concentrator: increases light-collecting area by x1.8
- Due to cylindrical geometry, effective increase only x1.5
- new baseline design:29,600 PMTs of 20% QE

Properties	12" PMT
OM front diameter	560 mm
OM length	700 mm
PMT length	330 mm
Light cone length	320 mm
Weight	30 kg
Maximum current	0.125 mA
HV requirement	2.0 kV
Power per OM	2.5 W

Radiopurity requirements

Isotope	Concrete	PSS Steel	OM-PMTs	OS Sheets	Scintillator
²³² Th	14 Bq/kg	0.2 Bq/kg	0.3 Bq/OM	150 Bq/kg	10⁻8 Bq/kg
238⋃	62 Bq/kg	0.5 Bq/kg	3.2 Bq/OM	600 Bq/kg	10 ⁻⁸ Bq/kg
⁴⁰ K	17 Bq/kg	0.03 Bq/kg	0.2 Bq/OM	200 Bq/kg	10 ⁻⁸ Bq/kg
⁶⁰ Co		0.03 Bq/kg			

- Concrete: corresponds to the situation at LNGS, selection required
- PMT support structure: stainless steel for chemical compatibility
- Optical modules and shielding: no special requirements
- Scintillator: Borexino level

→ Estimated trigger rate: 13 kHz

PMTs: 8.5 kHz, tank concrete 4.5 kHz

Liquids and gases

Materials

- 80,000 m³ of LAB
- 240 tons of PPO (3g/l)
- 1.6 tons of bis-MSB (20mg/l)
- >100,000 m³ pure water
- Nitrogen

Properties of LAB	
Chemical data	
Chemical formula	C ₁₈ H ₃₀
Molecular weight	241
Density	0.863 kg/l
Viscosity	4.2 cps
Flash Point	140 °C
HMIS ratings	
Health	1
Flammability	1
Reactivity	0
Optical parameters	
Index of refraction	1.49
Attenuation length	~15 m
Absorption length	40 m
Absreemission length	60 m
Rayleigh scattering length	40 m

Liquid and gas handling surface systems

Tasks

- Unloading of the arriving scintillator raw materials
- Fabrication of a master solution:
 LAB + 60g/l PPO + 0.4g/l bisMSB
- Purification of pure LAB and master solution
- Dilution of master solution in LAB
- Feeding into the trunk line
- Storage of unprocessed and processed liquids

Example: LAB processing line

Detector installation and filling

One possible Scenario: Prefilling with water

- Bottom PMT support structure (PSS) and optical modules (OM) are installed first.
- Tank bottom is flooded until PSS+OM are covered.
- Floating platform is lowered into the tank.
- Store by store, PSS and OMs are added.
- OMs are grouped in arrays (at least 2x2) assembled off-site.
- After reaching the top, water is drained from the tank while scintillator is added at the top.

Year 1

Year 2

Conclusions

- New design simplifies the detector construction.
- Gamma rates are scaled from earlier calculations by Randolph.
 Calculations should be confirmed by MC.
- New dimensions and design have to be implemented in MC. In my opinion, new standard should be LAB and FADC read-out.
- Specification document is a good start and was well received within LAGUNA-LBNO and by the technical partners.
- However, it is far from finished important items missing are e.g. clear concepts for wall anchorings, cabling and electronics, installation of the instrumentation ...