Report on LAGUNA WP5 Evo Meeting (9th February 2012)

Dominikus Hellgartner
Technische Universität München

LENA-Meeting 20th February 2012

Contents

Agenda of LAGUNA conference in Paris

Performance of other LAGUNA detectors

LENA detector performance at high energies

Current high energy performance table

Estimation of the NC-background

Suggestion of changes to the high energy performance table

Conclusion

Agenda of LAGUNA conference in Paris (WP 5)

Detector presentations (3h)

- ⇒ 1h per detector:
 - ▶ 45 min for two talks (preferably shorter)
 - ▶ 15 min for discussion

General part (1h)

- Presentation of GLoBES results based on the performance tables for each detector (20 min) Deadline for handing in revised versions: 20th February → today
- Presentation about atmospheric neutrinos (20 min)
- Presentation about SN-neutrinos (20 min)
- Silvia expects to be asked to give a summary talk.
 - ⇒ We need to prepare two slides showing our status/progress

Water Cherenkov - MEMPHYS

No changes since last LENA meeting

ITEM	EVALUATION	MEMPHYS	REMARKS
v_μ appaerance β-b	MC simulation ref: arXiv:hep-ph/0603172	Generated events:115367 Particle ID: 95717 Michel Electron ID: 61347	Exposure: 4400 kt yr Full oscillation (P=1)
Background π +	MC simulation ref: arXiv:hep-ph/0603172	Generated events: 507 Particle ID: 204 Michel Electron ID: 107	CC/NC events
Background π -	MC simulation ref: arXiv:hep-ph/0603172	Generated events: 341 Particle ID: 100 Michel Electron ID: 8	CC/NC events
antiv_μ appaerance β-b	MC simulation ref: arXiv:hep-ph/0603172	Generated events: 101899 Particle ID: 85285 Michel Electron ID: 69242	Exposure: 4400 kt yr Full oscillation (P=1)
Background $\pi+$	MC simulation ref: arXiv:hep-ph/0603172	Generated events: 674 Particle ID: 240 Michel Electron ID: 120	CC/NC events
Background π-	MC simulation ref: arXiv:hep-ph/0603172	Generated events: 400 Particle ID: 118 Michel Electron ID: 8	CC/NC events
Eres	MC simulation ref: arXiv:hep-ph/0603172	Gaussian distribution with σ=43 MeV	
v_µ desappaerance SB	ref: arXiv:hep-ph/0603172		
Background Composition	ref: arXiv:hep-ph/0603172	Composition: 90% v_e CC, 6% nD NC, 3% misID muons from CC, 1% antiv_e CC	

PHYSICAL POTENTIAL PERSPECTIVES

Discovery reach of sin^{2}20_13=5 10^-3 mean, for certain values of OCP values of 10^-4 are possible. B-b performances depend on the neutrino flux intensity! Systematical Error = 2%

MC Simulation with more events and more background sources: $\pi 0 ! \beta$ -b background strongly peaked at low energies--->does not affect the measure?

LAr - GLACIER

- ► Details to be found in presentation: http://pprc.qmul.ac.uk/~lodovico/Laguna_FDL20120209.pdf
- Based on arXiv:1109.6526v1
- Detector performance:

Detector characteristics	LArTPC (Both μ^{\pm} and e^{\pm})
Fiducial mass	$10 - 100 \mathrm{kt}$
Neutrino energy threshold	$0.5\mathrm{GeV}$
Detection efficiency (ϵ)	$100\% \text{ for } \mu^{\pm}$ $80\% \text{ for } e^{\pm}$
Energy resolution (δE) (GeV)	$0.15\sqrt{\mathrm{E/GeV}}$ for CC μ^{\pm} and e^{\pm} sample
NC background smearing	Migration matrices (different for ν and $\bar{\nu}$)
Bin size	$0.125~{ m GeV}$
NC background rejection efficiency	99.5%
Background from misidentified muons	0.5%
Efficiency for intrinsic $\nu_e/\bar{\nu}_e$ contamination	80%
Signal error (systematic)	5%
Background error (systematic)	5%

- Planned partial update at LAr meeting (22th February)
- Planned total revision for the Paris meeting

LENA: β-beam I

- Interactions simulated with GENIE event generator
- All interactions in the center of LENA
- Used channels: $\stackrel{(-)}{\mu}$ -appearance
 - \Rightarrow Signal identification via tagging of μ^{\pm} -decay
 - \Rightarrow Background: res/dis/coh events with π^{\pm}
- Performance:

• ν_{μ} appearance:

ν_{μ} appearance.			
item	evaluation	LENA	Remarks
signal	MC simulation, [1]	Generated events: 3901 (CC)	Full oscillation
		μ^{-} tagged: 3448 (88%)	$(\nu_{\mu} \text{ sample})$
Background π^{\pm}	MC simulation, [1]	Generated events:	No oscillation
		4800 (CC)/ 300 (NC)	$(\nu_e \text{ generated } \pi^{\pm} \text{ only})$
		μ^{\pm} tagged:	
		3800 (79%) /223 (74%)	

• $\bar{\nu}_{\mu}$ appearance:

item	evaluation	LENA	Remarks
signal	MC simulation, [1]	Generated events: 1457 (CC)	Full oscillation
		μ^{-} tagged: 1312 (90%)	$(\nu_{\mu} \text{ sample})$
Background π^{\pm}	MC simulation, [1]	Generated events:	No oscillation
		2000 (CC)/ 1600 (NC)	$(\nu_e \text{ generated } \pi^{\pm} \text{ only})$
		μ^{\pm} tagged:	
		118 (6%) / 673 (42%)	

LENA: β-beam II

- Energy reconstruction by photon counting + position dependent correction
- Treatment of NC and CC backgrounds in one migration matrix:

channel	item	used events
$\nu_e \rightarrow \nu_\mu$	signal	3448
$\nu_e \rightarrow \nu_\mu$	background	4023
$\bar{\nu}_e \rightarrow \bar{\nu}_\mu$	signal	1312
$\bar{\nu}_e \rightarrow \bar{\nu}_\mu$	background	755

- ⇒ Resolution between 5% and 10%
- ▶ Discovery reach: $\sin^2(2\theta_{13}) = 0.05$ mean
- ▶ Algorithms to discriminate against π^{\pm} required
- ▶ Impact of the ⁽⁻⁾/_{1e}-disappearance channel not yet evaluated
- Impact of further backgrounds (without π^{\pm}) not yet evaluated

LENA: Superbeam to Phyäsalmi: Energy reconstruction

- Energy reconstruction can be done by:
 - Photon counting + position dependent correction
 - Full event reconstruction (Juha Peltoniemi)
- ⇒ Performance dependent on event reconstruction capabilities.

approach	evaluation	LENA	Remarks
simple photon counting	MC simulation	$\lesssim 10\%$	flat spectrum,
(calorimetric approach)	Generated events:		no track reconstruction
	$2000 \; (\nu_{\mu}\text{-CC})$		used
	$1000 \; (\nu_e \text{-CC})$		
full event reconstruction	Scinderella MC Code, [2]	$\lesssim 3\%$	For full potential
	Generated events:		FADC readout
	$\lesssim 100 \text{ (all types)}$		required

LENA: Superbeam to Phyäsalmi : Background discrimination

- ▶ Have to discriminate between ν_e -CC and ν_μ -CC events.
 - Results from Juha Peltoniemi (full event reconstruction) look promising
 - Has to be verified with LENA-MC and higher statistics
- Additionally, separation of NC and CC channels is required
- ▶ Especially for $\stackrel{(-)}{\nu_{\theta}}$ -appearance, NC- π^0 are dangerous
 - Sebastian Lorenz's results using boosted decision trees look promising

⇒ Current table:

item	evaluation	LENA	Remarks
$e \leftrightarrow \mu$	Scinderella MC Code, [2]	no misidentification	For full potential
	Generated events:	observed	FADC readout
	$\lesssim 100 \text{ (all types)}$		required
$\pi^0 \leftrightarrow e^{\pm}$	MC Simulation, [3]	30% background at 92% efficiency	constant event
	Generated events:	10% background at 63% efficiency	position and
	$\sim 200000 {\rm e^-} {\rm and} \pi^0 {\rm each}$	1% background at 17% efficiency	direction
	(sub GeV, no Vertex)		

LENA: Estimation of the NC-background

Based on results of GENIE-Simulations

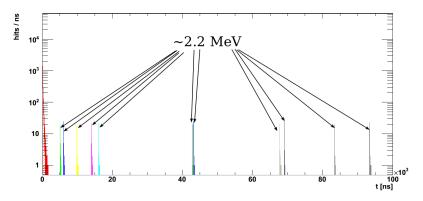
- ▶ 44% of all NC events have at least one π^+
 - \Rightarrow Tagging by looking for μ^+ decays (86% tagging efficiency)
 - π^- typically captured before they decay
- ▶ 47% of the remainder have at least one π^0
 - \Rightarrow Use Sebastian's values for $\pi^0 \leftrightarrow e^{\pm}$ discrimination
- 7.2% of the remainder produce e[±], γ, K^{0,±} or heavier particles
 - ⇒ Conservative assumption: No discrimination possible
- ▶ 31% of the remainder are basically pure π^-
 - ⇒ Should be easy to tag via pulse shape
- The remaining events contain only (anti) protons and neutrons.
 - ⇒ Should be easy to tag via pulse shape
- \Rightarrow NC-contamination \in [11%, 34%], dependent on the performance for the last two event types
- ⇒ Signal efficiency at 27.7% (best case!)

LENA: Suggestion of changes to the high energy performance table

- ▶ Add some additional information on the used β -beams.
- ▶ Update the values for the $e \leftrightarrow \pi^0$ discrimination to the values of Sebsatian's diploma thesis
- ► Add the proposed values for the NC-background (see last slide) to the table

Event type	Fraction of	LENA	Remarks
	NC-events		
At least one π^+	44%	Discrimination by	Efficiency determined
		tagging of decay muon,	at sub GeV energies,
		efficiency 86% [2]	π^- captured at $^{12}\mathrm{C}$
At least one π^0	32%	MVA[4]	Discrimination should be
but no π^+		10% contamination	better for events
			with multiple π^0
At least one e [±] ,	1.7%	No discrimination	To be studied
γ , K ^{0,±} or heavier,		available	
neither π^0 nor π^+			
"pure" π^-	7%	Kinematic of pion	For pure
		corresponds to μ^{\pm} ,	e- μ discrimination via
		pulse shape discrimination	pulse shape, see [2]
		should be applicable.	
Events with only p [±]	15%	Quenched to lower energies	
or $\stackrel{(-)}{n}$		different pulse shape	

11/12


Conclusion

- High energy physics table is the base for the detector-performance for ν-beams as presented at the Paris meeting.
- LENA performance for β-beam
 - Appearance channel nearly complete
 - Disappearance channel not yet dealt with, of minor importance
 - ⇒ No urgent action required
- LENA performance for Superbeam to Phyäsalmi.
 - Juha's work predicts good performance
 - Sebastian's analysis with boosted decision trees looks promising
 - First estimation of NC-background contamination
 - ⇒ More work has to be done to get reliable values!

Possible problems

- Efficiency of muon-tagging at very high energies, degradation due to long duration of primary event?
- Impact of produced protons and especially neutrons on the pulse shape?

