

WP6: JRA on Provenance Overview

Brian Matthews, Erica Yang

Scientific Applications Group E-Science Centre STFC Rutherford Appleton Laboratory

brian.matthews@stfc.ac.uk

WP 6: JRA on provenance

Start M7 (April 2012), Finish M30

- STFC (Lead) 18 SM

- ILL 6 SM

– ELETTRA 12 SM

WP6: managing the data continuum

The Provenance JRA

- Extends the repository of information about an experiment
- Tracking and logging the data analysis steps it links all the data artefacts
- Records the data continuum
- tracking of provenance of data
- from proposal to publication.

In general

- A large and complex task
- Establishing Science benefit

Objective

- To develop a conceptual framework, which can record and recall the data continuum, and especially the analysis process.
- To provide a software infrastructure which implements that model to record analysis steps hence enabling the tracing of the derivation of analysed data outputs.

Tasks

- Task 1: Requirements for Provenance
- Task 2: Modelling the data continuum
- Task 3: Ontologies for specific instruments/techniques
- Task 4: Tool Support for the Data Continuum
- Task 5: Tracing the Data Continuum
- Task 6: Evaluation

Deliverables

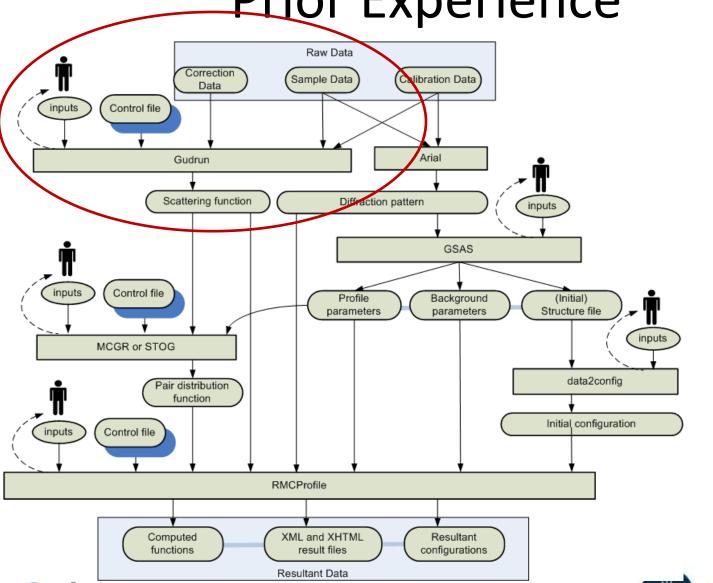
- Deliverables and month of delivery
- D6.1: Model of the data continuum in Photon and Neutron Facilities (M12)
- D6.2: Common ontology definition and definition of tools to support the use of provenance for Photon and Neutron Facilities (M18)
- D6.3: Tools for building research objects in Photon and Neutron Facilities (M24)
- D6.5: Evaluation report on provenance management in Photon and Neutron Facilities (M30) .

Requirements

- Explore some case studies e.g.
 - ISIS SNS (see later) (ISIS)
 - Express services (ISIS, DLS?)
 - DAWN (ESRF/DLS)
 - Directly Programming Data Analysis Kit (DPDAK) (DESY)
 - ISPyB (DLS/ESRF)
 - Publication linking (e.g. DLS+IUCr, ISIS)
- Work with Virtual Laboratories

Data Continuum Metadata Repository Record **Publication Proposal** Fale total Subsequent **Approval** publication registered Data analysis with facility Scientist submits application for Data Scheduling beamtime cleansing Experiment Tools for processing made available Facility committee approves application **PanSoft** Raw data filtered and cleansed Scientists visits, facility run's Facility registers, experiment trains, and schedules Science & Technology Facilities Council scientist's visit

Capturing data Provenance for Science: A Use Case and Next Steps

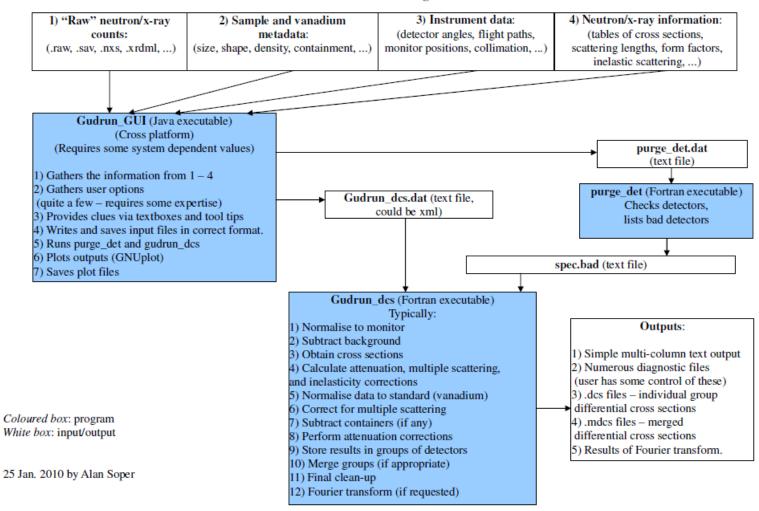

Erica Yang, Brian Matthews

Scientific Information Group
STFC e-Science

Prior Experience Raw Data

Raw data

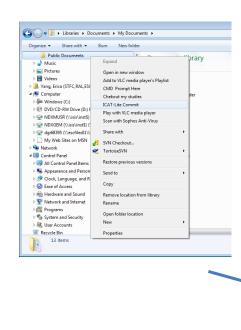
Derived data

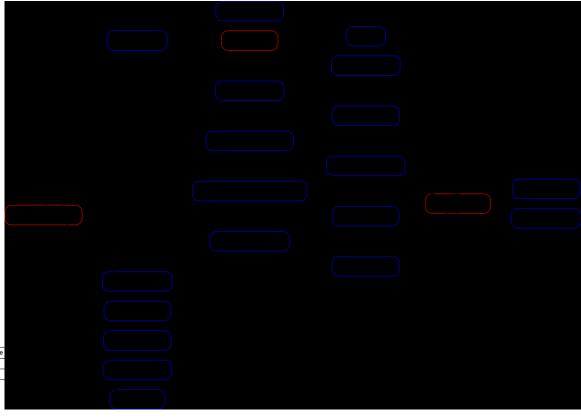

Resultant data

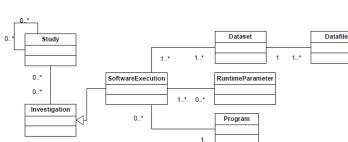
Credits: Martin Dove, Erica Yang (Nov. 2009)

Prior Experience

Gudrun flow diagram





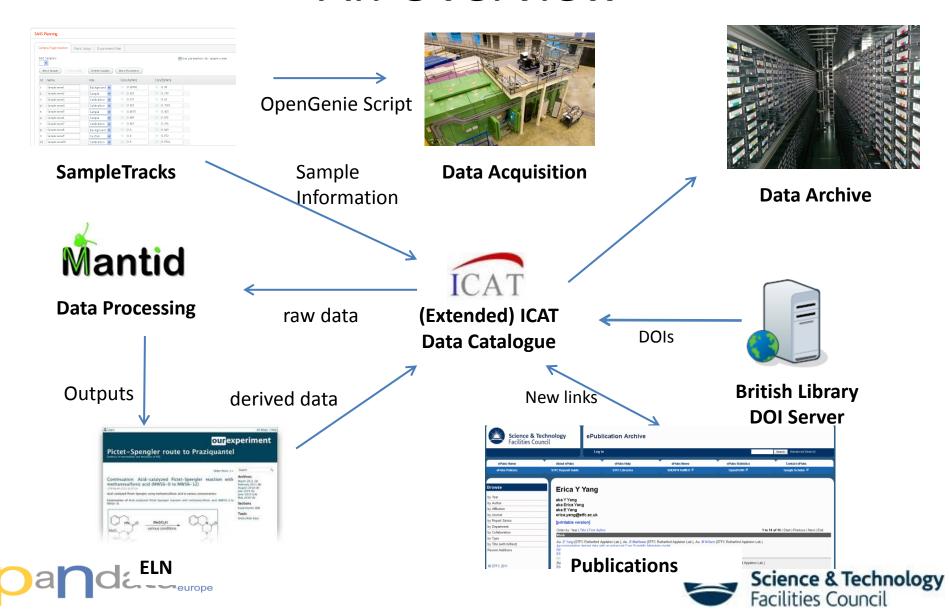

Science & Technology
Facilities Council

Credits: Alan Soper (Jan. 2010)

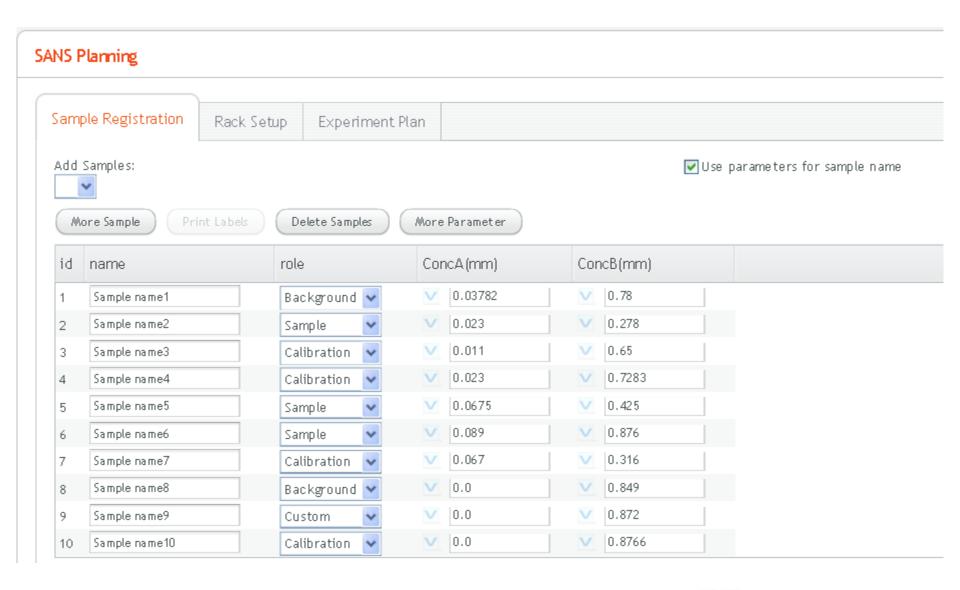
Prior Experience

What we have learned

- Flexibility is the key to manage data provenance
 - Allow "Mix and match" of data processing trials
 - Support forward and backwards tracing of data provenance (e.g. raw<->derived<->paper)
- Researchers are hesitated to change their well established software/practice. "Why would I change?"
 - Need to demonstrate the benefits!



Use Case: Leveraging Data Provenance for Data Reduction



An Overview

Sample Registration

Experiment Planning – Runs: Detailed View

Autofill Runs - Configurations

Run	Sample	Configuration	Length	Thick	~	Background
1 🚷	Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)	SANS 6m	40	1.0		
2 🚷	Sample name2: ConcA/0.023(mm)-ConcB/0.278(mm)	SANS 6m	40	1.0		Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)
3 🚷	Sample name3: ConcB/0.65(mm)-ConcA/0.011(mm)	SANS 6m	40	1.0		Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)
4 🚷	Sample name4: ConcB/0.7283(mm)-ConcA/0.023(mm)	SANS 6m	40	1.0		Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)
5 🚷	Sample name5: ConcB/0.425(mm)-ConcA/0.0675(mm)	SANS 6m	40	1.0		Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)
6 🚷	Sample name6: ConcA/0.089(mm)-ConcB/0.876(mm)	SANS 6m	40	1.0		Sample name8: ConcA/0.0(mm)-ConcB/0.849(mm)
7 🚷	Sample name7: ConcA/0.067(mm)-ConcB/0.316(mm)	SANS 6m	40	1.0		Sample name8: ConcA/0.0(mm)-ConcB/0.849(mm)
8 🚷	Sample name8: ConcB/0.849(mm)-ConcA/0.0(mm)	SANS 6m	40	1.0		
9 🚷	Sample name9: ConcB/0.872(mm)-ConcA/0.0(mm)	SANS 6m	40	1.0		Sample name8: ConcA/0.0(mm)-ConcB/0.849(mm)
10 🚷	Sample name10: ConcA/0.0(mm)-ConcB/0.8766(mm)	SANS 6m	40	1.0		Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)
11 🚷	Sample name1: ConcB/0.78(mm)-ConcA/0.03782(mm)	TRANS	10	1.0		
12 🚷	Sample name2: ConcA/0.023(mm)-ConcB/0.278(mm)	TRANS	10	1.0		
13 🚷	Sample name3: ConcB/0.65(mm)-ConcA/0.011(mm)	TRANS	10	1.0		
14 🚷	Sample name4: ConcB/0.7283(mm)-ConcA/0.023(mm)	TRANS	10	1.0		
15 🚷	Sample name5: ConcB/0.425(mm)-ConcA/0.0675(mm)	TRANS	10	1.0		
16 🚷	Sample name6: ConcA/0.089(mm)-ConcB/0.876(mm)	TRANS	10	1.0		
17 🚷	Sample name7: ConcA/0.067(mm)-ConcB/0.316(mm)	TRANS	10	1.0		
18 🚷	Sample name8: ConcB/0.849(mm)-ConcA/0.0(mm)	TRANS	10	1.0		
19 🚷	Sample name9: ConcB/0.872(mm)-ConcA/0.0(mm)	TRANS	10	1.0		
20 (🚷)	Sample name10: ConcA/0.0(mm)-ConcB/0.8766(mm)	TRANS	10	1.0		

WinteScript

Instrument Control Script

```
# A faked up script example for the SRF use case sandbox

SETSCRIPTNAME THIS_PROCEDURE()

Sample_par width=8 height=8 geometry="Disc"

DO_TRANS

MOVE pos="T9" thick=1 uAhr=10 title="Sample_Example_TRANS_A1-01"

MOVE pos="T10" thick=1 uAhr=10 title="Background_Sample_Example_TRANS_A2-01"

MOVE pos="T11" thick=1 uAhr=10 title="Sample2_Example_TRANS_A3-01"

MOVE pos="T12" thick=1 uAhr=10 title="Directbeam_A0-00"

DO_SANS

MOVE pos="T9" thick=1 uAhr=40 title="Sample_Example_SANS_A1-02"

MOVE pos="T10" thick=1 uAhr=40 title="Background_Sample_Example_SANS_A2-02"

MOVE pos="T11" thick=1 uAhr=40 title="Background_Sample_Example_SANS_A2-02"

MOVE pos="T11" thick=1 uAhr=40 title="Sample2_Example_TRANS_A3-02"
```


Flexible Data Model

- Arbitrary number and types of sample parameters, for different types of <u>experiments</u>
- Arbitrary number and types of sample configurations, for different types of <u>instruments</u>
- Designed to work with existing instrument control system, data acquisition system, data catalogue (ICAT), and data processing software
- Designed to allow capturing and tracking of data provenance from samples, to raw and reduced data, and to publications, and backwards

Next Steps

- Firming up the use cases
 - Revisiting the requirements and existing approaches for data provenance within the PanData facilities
 - Modelling the data continuum
 - Commonalities across existing approaches
 - Common processes across facilities
 - Work with other WPs/partners, e.g.
 - WP4: Data Catalogue Service
 - WP5: Use cases in Virtual Laboratories
 - Directly Programming Data Analysis Kit (DPDAK)
 - Nexus Application Definitions
 - Flagship demonstrations to demonstrate the benefits
 - Express services

Benefits

- Showcase that data provenance can directly improve research productivity
- Improve facility operational efficiency
- Follow the "non-intrusive" principle to capture and catalogue metadata, designing as part of researchers' existing workflow

