Joint PNI-HDRI and PaNdata workshop

The HDRI Nexus C++API

Eugen Wintersberger
The HDRI Nexus C++ API
DESY, 27.02.2012

Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 1

The future of data storage at PNI facilities

HDFView

File Window Tools Help
¥
EERCIEE
File/URL |acumemsrra\ks/phumnisc\ence;alkizs‘1Lzoufexamp\es/en‘hs‘v
ex1.hs T T ———
tt - fscan..
1

[mon1 \

2 Binary data format (performance) 3

OOOOOOOOO

2 File system like data organization i

2> Metadata as attributes to data objects - :

> Platform independent

“Table 3.15. NXdetector
Name and Attributes Type Tnits
[Totaltme of fight
eine_of_f1ight INX_FLOAT INX_TIME_OF_FLIGHT Pimensions: rank="1"
P ———
== [NX_POSINT
= N PosiT
[eZong_name XCHAR [[axisba
B [NX_CHAR fabsolute path to location in NXdetector
in
in

.y > Adds semantics to HDF5 objects I N
N cxus 2 Standardized keywords making data

searchable and indexable

Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 2

How do we get Nexus files

Nexus C/C++ API (NAPI) developed by the Nexus group itself:
20Id style C/C++ interface (a lot of pointers and void)

2> Not very comfortable to use
2>Hard to get permanent handlers to individual objects
> The concept is that of a file system!

Use HDF5 directly:
> The APl is pretty complex

=>|f the C++ interface shall be used there is no thread safety

There must be a better solution!

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 3

The HDRI Nexus C++ API ...

Due to the inconveniences of the NAPI we decided to implement our own C++ API!

Design goals:
=> Thread safety

> Exception safety => use only first class objects!

=>High performance
Item 18: Make interfaces easy to

> Type safety (no need for void) use correctly and hard to use

_ _ incorrectly.
=>Should be easy to maintain 4

=> Stick more to C++ idioms

Scoftt Meyers, Effective C++

In order to satisfy this requirements we made some restrictions:
> Support only HDF5

>HDF5 must be compiled with thread-safety

2>Needed to make some additions to Nexus binary standard

= Actually no support for non-object oriented languages
Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 4

Supported datatypes ...

Integer types Floating point types
Name Size (bit) Description Name Size (bit)
Int8/UInt8 8 Signed/unsigned Float32 32
Int16/UInt16 16 Signed/unsigned Float64 64
Int32/UInt32 32 Signed/unsigned Float128 128
Int64/UInt64 64 Signed/unsigned Complex32 64
Complex64 128
String type Complex128 256
Use std::string<chqr> as string type. The complex types are instances
Encoded as UTF8 in the HDF5 file. of the std::complex<T> template!
Binary type
template<typename T> Binary data is not handled as a simple typdef to

class BinaryType

(unsigned char butis a compatible new type. In

........... HDF5 this is stored as H5T OPAQUE!

}i
Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 5

Class structure (only the front end)

Keep things as simple as possible for the API user!

Fundamental classes Utility classes

s | e |

!

[NXField] [NXGroup J -

T Classes used to make data
NXFEile access more convenient and
simple.

Classes assembling the Nexus tree.

Eugen Wintersberger | The HDRI Nexus C++ APl | 27.02.2012 | Page 6

Classes: behind the scenes ...

Keep user interface independent of the concrete implementation:

Bridge Pattern

E. Gamma, R. Helm, R. Johnson, and J. Vlissides:
Design Patterns Elements of Reusable Object-Oriented Software

template<typename ImpT>

class NXObject Use a special implementation of the

{ bridge pattern based on templates.
private:
ImpT imp; D. Vandevoorde and N. M. Josulttis:

public: C++ Templates: The Complete Guide

}i

This special implementation does not require a pointer (which is not a first class
object) to the concrete implementation — we should keep exception safety into
account.

As a user you usually do not need to care about such things!
Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 7

Groups, Files, and Links ...

>Files are created by factory methods (open file,create file) of NXFile
= Groups can be created either by NXFile or NXGroup (create group)
2> External as well as internal links can be created (1ink(...))

Creating files and groups

NXFile file = NXFile::create file(“testl.h5”,true,0);

NXGroup g = file.create_group(”scan_l","NXentry");

g.create group(“instrument”,”NXinstrument”);

Creating external and internal links

g = file[“/scan_1/instrument”];

//create an internal link
g.link(”/link_to_instrument”);

//create an external link
g.link(“pilatus_data.h5:/detector”,”detector”);

Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 8

The concepts behind NXField ...

Consider NXField as a multidimensional array of a particular datatype!

NXGroup g = ..;

//datatype and number of dimensions fixed at creation
NXField f = g.create field<Float32>(“data”,{512,1024});

Float64Array a({512,1024}%,...);
f.write(a); //write data
f.read(a); //read data

The rank of a NXField is fixed at creation time, however the field can grow:

dim=0 dim=0

f.grow(0,2);

el

Grow a field by 2 elements
along dimension 0.

Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 9

dim

NXSelection — sometimes not everything is important

NXSelection allows you to read only a small portion of the data stored in a field!

NXField field

g.
NXSelection sel =

field.selection();

create field<Float32>(“data”,{512,1024});

//setup the selection object dim=1 1024
sel.offset({0,0}); <ﬁ """""""""""
sel.stride({1,1}); s [T
sel.count({1,1024}); sttt
FloatedArray data({1024},...); | [| ______Selection [||
for(size t i=0;i<512;i++) | [[~~~ """ttt
{ ———————————————————————
data = .., | 1 """t TTTrmmmmmmmmms
sel.write(data); | Tl """ -c-mmmmmmm-----
} ______________________
o
N
LN

Selections can be created only via the selection () factory method of an NXField

object. The reason is that they hold an internal reference to this field and are thus
closely connected to the dataset from which they stem.

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 10

A very simple example — writing data

That kind of code could appear in a TANGO server for an area detector:

NXFile f = NXFile::create file("”detector.h5”,true,0);
UInt32Array frame({1024,1024},...);

//create detector group
NXGroup g = f.create group(”/scan_l/instrument/detector”,”NXdetector”);

//create field
NXField data = g.create field<UInt32>(“data”,{0,1024,1024});

odim=1 O
//create selection N, — \Qh
NXSelection fsel = data.selection(); .gl\ \Q
fsel.count({1,1024,1024}); © N\
fsel.stride({1,1,1}); \:
N
//write data to file N
for(size t i=0;i<NP;i++){ 5\
frame = .. ; //get frame data :h
data.grow(0); 'H
fsel.offset({i,0,0}); .
fsel.write(frame); i
) growth 1 N—=———
dimension ‘1 o1 o0 Lo

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 11

A very simple example — reading data

Something like this you may have in an analysis program

NXFile f = NXFile::open file(“”detector.h5”);
Float64Array slice({6000,1024},...);

size t NP = 6000; '
dim=1
//open data field ¢ dims
NXField data = f[“/scan_1l/instrument/” %l
"detector/data”];

g

A N N N W N . N N NP

NN NN N NN NN

//create selection

NXSelection fsel = data.selection();
fsel.count({NP,1,1024});
fsel.stride({1,1,1});

//write data to file
for(size t i=0;i<1024;i++){
fsel.offset({0,1,0});
fsel.read(slice);
//do some processing here

VAV S DA EEEEEE A4

VAV A S S A E AL A

}

The last two examples have shown that the APl is

pretty simple to use — even from C++!
Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 12

Performance of the API ...

Remember: High performance was a design goal!

Benchmark scenario:
2> Write 4800 frames of size 1k x 1k of datatype UInt16 to a file

>Harddrive: 1TByte SATA3
2> RAM-Disk: 10GByte tmpfs partition

Frames per second Transfer rate (Mbyte/s)

Ram-Disk

libpninx 3200 6500
Native HDF5 3300 6600
SATA - Drive

libpninx 53 107
Native HDF5 57 115

Even without optimization of program flow the overhead produced by the

APl is negligible!
Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 13

Status of the API ...

=> APIs interface is stable
=>» Doxygen documentation is at 90%
=» Users-Guide and Developers-Guide are on their way

=>» Unit tests for all available data-types show no serious
problems

=> Build tested on Debian/Ubuntu 64Bit with g++ 4.4, 4.5,4.6
=> Currently HDF5 1.8.4 (SO_VERSION=6) is supported

The APl is ready to use — best time for early
adaptors!

Get the code
For libpniutils: https://sourceforge.net/projects/libpniutils/
For libpninx: https://sourceforge.net/projects/libpninx/

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 14

https://sourceforge.net/projects/libpniutils/

Outlook and Todo ...

=2 Implement python interface!

=» Implement locking mechanism for thread safety
=>Windows support

=» Implement a better method for group creation

NXGroup g = f.create group(“scan_l:NXentry/instrument:NXinstrument”)

=» STL container decorators for NXField

NXListDecorator decorator(0,field);
Float32Array data(...);
Decorator.append(data);

for(Float32Array &a: decorator){

}

Implement configuration utilities and classes. However it is questionable if these
things should go into the API — they are maybe too specific to a particular facility.

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 15

We established contact with the HDF5 group to fix two major issues with HDF5:
= Improve archiving features of HDF5

= General interface for external filters

Archiving:

Store meta-data and payload in
separate files where the later one
shall be split too.

H5FD_SPLIT H5FD_SPLIT
+H5FD_FAMILY

file.meta.h5 file.meta.h5

file.data_1.h5

H DF5 file.data_2.h5
File:

ﬁle h5 file.data.h5 file.data_3.h5

file.data_4.h5

file.data_5.h5

External filters:

Parallel, 3" party filter code shall
improve compression performance.

chunk 1

Thread 1
» [[TTTTT1

chunk N

Thread 2
» | [[[[T []]

Thread3
[TTTTTTTIT

Thread4
[TTTTTTT]
Thread 5
» [[TTTTT1

comp. chunk 1
Block 1
Block 2
Block 3
» Block 4
Block 5

Eugen Wintersberger | The HDRI Nexus C++ API | 27.02.2012 | Page 16

Native Nexus support by detectors and software ...

DECTRIS

DECTRIS has announced native support for
Nexus for Pilatus and future Aiger detectors
most probably as of 2013.

Nexus for QXRD

We use QXRD as a readout software for g
PerkinElmer area detectors. The data is |
actually written to TIF files. However, QXRDs |
main developer already agreed to help us with
integrating Nexus to the software.
Planned for 2012/2013. —

Ty

.
ENSIEEDE i ;B

orwsreg e

- > Comte]

..
Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 17 DESY
/‘\

Thank you for your attention...

Eugen Wintersberger | The HDRI Nexus C++ AP| | 27.02.2012 | Page 18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

