
HDF5 Parallel Reading and

Tomography Processing at DLS

Mark Basham

Scientific Software Team

Diamond Light Source Ltd.

Network Infrastructure

2x10 Gbit/s

1 Gbit/s Beamline

Switch

80 Gbit/s

Cluster Switch

40x1 Gbit/s

Central

Switch

Cluster

30 Gbit/s

40 Gbit/s

Lustre Client

NFS/SMB export

Cluster Switch

Cluster

Detector

Computer

10Gbit/s

Lustre file system

427TB usable

~5.6GB/s read and write

40x1 Gbit/s

40 Gbit/s

40 x 8CPU

(320 Total),

2.5GHz,

16GB RAM

40 x 12CPU

(480 Total),

2.7 GHz,

24GB RAM

Disks

Tomography – Data Collection

• Data is collected straight to HDF5 3D data arrays

• 4000x2600 pixel 16 bit
greyscale image

• Stored as an
[4000,2600,6000] array

• Totals around 120 GB
of data

• Collection Time can be
as fast as 30 minutes.

Tomography – Data Slicing

• The data is collected as

[4000,2600,1] images

• The Camera software caches

images though so that it can be

written in [4000,16,8] chunks

• This is so that the data can be

read out quickly as [4000,1,6000]

sinograms, directly from the file.

Tomography – Data Extraction

• Data is read out as a stack of

sinograms using parallel hdf5

across 8 dedicated GPU

cluster nodes, running 2 tasks

per machine.

• The bandwidth from the Lustre

file system using parallel HDF5

is 25MB/s per Job, meaning a

total parallel read speed of

about 400MB/s

• We are hoping to push this

closer to line speed (50MB/s)

with further optimisations.

Job

2 x tasks

2 x tasks

2 x tasks

2 x tasks

2 x tasks

2 x tasks

2 x tasks

2 x tasks

8 x GPU Node

GPU

GPU

16 total

Tomography – Reconstruction

• Each of the 16 jobs then processes

their set of sinograms using one of our

GPUs

• Currently takes about 17 seconds per

Sinogram, so this totals a

reconstruction time of about 45

minutes

• We are currently looking to treble the

number of GPU’s in this older cluster,

and buy a new GPU Cluster to

decrease times, and deal with more

tomography beamlines coming on line.

Tomography – Storage

• The results are then stored as a stack of TIFF

images

• This will soon be instead to a single HDF5

volume

• This will mean that the user can leave Diamond

with 2 files, one of the raw data, and one with

the full reconstruction.

Python

Tomography – Current Implementation

Details

• Reconstruction routine is from

Manchester University and

converts a TIFF sinogram to a

TIFF reconstructed slice.

• The HDF5 extraction code is

written in python using numpy and

h5py, and wrappers this program.

• There is a top level Python script

which uses qsub to run the jobs in

parallel on the cluster

Recon

Python

Recon

Python

Recon

Python

Recon

Python

Recon

Python

Recon

Python

Recon

Python

Recon

Python

SGE

Tomography – Current Implementation

What we have Learned.

• H5py incredibly easy to deal with hdf5 and nexus files in

python.

• There are some overheads in running 16 concurrent

reads from the same file with h5py in our Lustre file

system

• Be careful with caching

– 1 x [4000,1,2000] – 18 seconds

– 15 x [4000,1,2000] – 2 seconds each – 30 seconds

– 1 x [4000,16,2000] – 16 seconds

• Cant write back easily at all.

– H5py dose not lock as expected.

Next Steps – A generic HDF5 Reader

with processing library

• Motivation

– Scientists don't want to or know how to program

properly with HDF5 or MPI or Both

– A lot of reduction and processing steps are slice by

slice processing

• Tomography

• NCD Data Reduction

• MX Data Processing

Next Steps – A generic HDF5 Reader

with processing library

• Implementation

– Program written in c, using MPI and pHDF5

– Connects to a user library which has a simple call-

back style API, requiring a minimum of effort for

someone to create and compile a processing library

using any tools they wish

– Most of the memory management is done outside of

the library to try to keep down memory management

issues

API – Get library info, initialise

• int h5io_init(void* context, const h5io_global_param_t

param, int *num_inputs, int *num_outputs);

– num_inputs = 3

– num_outputs = 1

– return 0

Parallel HDF5 Reading Infrastructure

• int request_input(void* context, int input_index = 0, char

**dataset_location);

– dataset_location => "/data/imagedata“

• int set_input_slice(void* context, int input_index = 0,

const h5io_dataspace_t *inputs, int **slicing_map);

– Input->shape = [1024,1024,5]

– slicing_map => [0,0,1]

– Return 0,1

Parallel HDF5 Reading Infrastructure

• int request_input(void* context, int input_index = 1, char

**dataset_location);

– dataset_location => "/ data/darkdata“

• int set_input_slice(void* context, int input_index = 1,

const h5io_dataspace_t *inputs, int **slicing_map);

– Input->shape = [1024,5]

– slicing_map => [0,1]

– Return 0,2

Parallel HDF5 Reading Infrastructure

• int request_input(void* context, int input_index = 2, char

**dataset_location);

– dataset_location => "/data/motorposition“

• int set_input_slice(void* context, int input_index = 2,

const h5io_dataspace_t *inputs, int **slicing_map);

– Input->shape = [25,30]

– slicing_map => [0,0]

– Return 0,3

Parallel HDF5 Reading Infrastructure

• int request_output(void* context, int output_index = 0,

char **dataset_location, h5io_dataspace_t *output);

– dataset_location => “output/data”

– output

• shape = [512,512,-1]

• type = h5io_int32

Parallel HDF5 Reading Infrastructure

• int process(void* context, int slice_number = 0, int

 num_inputs = 3, const h5io_dataspace_t

*input_data, int num_outputs = 1, const

h5io_dataspace_t *output_data);

– slice_number = 0

– Input data

• /data/imagedata = [1024,1024]

• /data/darkdata = [1024]

• /data/motorposition = [25,35]

– Output data

• /output/data = [512,512]

Parallel HDF5 Reading Infrastructure

• int process(void* context, int slice_number = 1, int

num_inputs = 3, const h5io_dataspace_t *input_data, int

num_outputs = 1, const h5io_dataspace_t *output_data);

– slice_number = n

– Input data

• /data/imagedata = [1024,1024]

• /data/darkdata = [1024]

• /data/motorposition = [25,35]

– Output data

• /output/data = [512,512]

Parallel HDF5 Reading Infrastructure

• int processing_complete(void* context);

– This is called once all the processing is complete, the

user library should clean up any resources it is using

here.

• const char* get_error_code(void* context, int

error_code);

– This function is called if any of the other library

functions return an non zero value, it should be a

case statement

Processing Libraries

• There are several example libraries planned for the

pHDF5 reader tool:

– Benchmarking library

– Tiff Extractor

– External Process wrapper

– Direct interface to Manchester Tomography Program

Any Questions?

