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Tomography – Data Collection 

• Data is collected straight to HDF5 3D data arrays 

 

 

• 4000x2600 pixel 16 bit 
greyscale image 

• Stored as an 
[4000,2600,6000] array 

• Totals around 120 GB 
of data  

• Collection Time can be 
as fast as 30 minutes. 

 

 



Tomography – Data Slicing 

• The data is collected as 

[4000,2600,1] images 

• The Camera software caches 

images though so that it can be 

written in [4000,16,8] chunks 

• This is so that the data can be 

read out quickly as [4000,1,6000] 

sinograms, directly from the file.  

 



Tomography – Data Extraction 

• Data is read out as a stack of 

sinograms using parallel hdf5 

across 8 dedicated GPU 

cluster nodes, running 2 tasks 

per machine. 

• The bandwidth from the Lustre 

file system using parallel HDF5 

is 25MB/s per Job, meaning a 

total parallel read speed of  

about 400MB/s 

• We are hoping to push this 

closer to line speed (50MB/s) 

with further optimisations. 
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Tomography – Reconstruction 

• Each of the 16 jobs then processes 

their set of sinograms using one of our 

GPUs 

• Currently takes about 17 seconds per 

Sinogram, so this totals a 

reconstruction time of about 45 

minutes 

• We are currently looking to treble the 

number of GPU’s in this older cluster, 

and buy a new GPU Cluster to 

decrease times, and deal with more 

tomography beamlines coming on line. 

 

 



Tomography – Storage 

• The results are then stored as a stack of TIFF 

images 

• This will soon be instead to a single HDF5 

volume 

• This will mean that the user can leave Diamond 

with 2 files, one of the raw data, and one with 

the full reconstruction. 



Python 

Tomography – Current Implementation 

Details 

• Reconstruction routine is from 

Manchester University and 

converts a TIFF sinogram to a 

TIFF reconstructed slice. 

• The HDF5 extraction code is 

written in python using numpy and 

h5py, and wrappers this program. 

• There is a top level Python script 

which uses qsub to run the jobs in 

parallel on the cluster 
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Tomography – Current Implementation 

What we have Learned. 

• H5py incredibly easy to deal with hdf5 and nexus files in 

python. 

• There are some overheads in running 16 concurrent 

reads from the same file with h5py in our Lustre file 

system 

• Be careful with caching 

– 1 x [4000,1,2000] – 18 seconds 

– 15 x [4000,1,2000] – 2 seconds each – 30 seconds 

– 1 x [4000,16,2000] – 16 seconds 

• Cant write back easily at all. 

– H5py dose not lock as expected. 



Next Steps – A generic HDF5 Reader 

with processing library 

• Motivation 

– Scientists don't want to or know how to program 

properly with HDF5 or MPI or Both 

– A lot of reduction and processing steps are slice by 

slice processing 

• Tomography 

• NCD Data Reduction 

• MX Data Processing 



Next Steps – A generic HDF5 Reader 

with processing library 

• Implementation 

– Program written in c, using MPI and pHDF5 

– Connects to a user library which has a simple call-

back style API, requiring a minimum of effort for 

someone to create and compile a processing library 

using any tools they wish 

– Most of the memory management is done outside of 

the library to try to keep down memory management 

issues 



API – Get library info, initialise 

• int h5io_init(void* context, const h5io_global_param_t 

param, int *num_inputs, int *num_outputs); 

– num_inputs = 3 

– num_outputs = 1 

– return 0 

 



Parallel HDF5 Reading Infrastructure 

• int request_input(void* context, int input_index = 0, char 

**dataset_location); 

– dataset_location => "/data/imagedata“ 

• int set_input_slice(void* context, int input_index = 0, 

const h5io_dataspace_t *inputs, int **slicing_map); 

– Input->shape = [1024,1024,5]  

– slicing_map => [0,0,1] 

– Return 0,1 

 



Parallel HDF5 Reading Infrastructure 

• int request_input(void* context, int input_index = 1, char 

**dataset_location); 

– dataset_location => "/ data/darkdata“ 

• int set_input_slice(void* context, int input_index = 1, 

const h5io_dataspace_t *inputs, int **slicing_map); 

– Input->shape = [1024,5]  

– slicing_map => [0,1] 

– Return 0,2 



Parallel HDF5 Reading Infrastructure 

• int request_input(void* context, int input_index = 2, char 

**dataset_location); 

– dataset_location => "/data/motorposition“ 

• int set_input_slice(void* context, int input_index = 2, 

const h5io_dataspace_t *inputs, int **slicing_map); 

– Input->shape = [25,30]  

– slicing_map => [0,0] 

– Return 0,3 



Parallel HDF5 Reading Infrastructure 

 

• int request_output(void* context, int output_index = 0, 

char **dataset_location, h5io_dataspace_t *output); 

– dataset_location => “output/data”  

– output 

• shape = [512,512,-1] 

• type = h5io_int32 

 

 

 



Parallel HDF5 Reading Infrastructure 

• int process(void* context, int slice_number = 0, int 

 num_inputs = 3, const h5io_dataspace_t 

*input_data, int num_outputs = 1, const 

h5io_dataspace_t *output_data); 

– slice_number = 0 

– Input data 

• /data/imagedata = [1024,1024] 

• /data/darkdata = [1024] 

• /data/motorposition = [25,35] 

– Output data 

• /output/data = [512,512] 



Parallel HDF5 Reading Infrastructure 

• int process(void* context, int slice_number = 1, int 

num_inputs = 3, const h5io_dataspace_t *input_data, int 

num_outputs = 1, const h5io_dataspace_t *output_data); 

– slice_number = n 

– Input data 

• /data/imagedata = [1024,1024] 

• /data/darkdata = [1024] 

• /data/motorposition = [25,35] 

– Output data 

• /output/data = [512,512] 

 



Parallel HDF5 Reading Infrastructure 

• int processing_complete(void* context); 

– This is called once all the processing is complete, the 

user library should clean up any resources it is using 

here. 

• const char* get_error_code(void* context, int 

error_code); 

– This function is called if any of the other library 

functions return an non zero value, it should be a 

case statement 

 



Processing Libraries 

• There are several example libraries planned for the 

pHDF5 reader tool:  

– Benchmarking library 

– Tiff Extractor 

– External Process wrapper 

– Direct interface to Manchester Tomography Program 



Any Questions? 


