Summary of t & SUSY workshop @ Bonn

David Côté

Introduction

- What?
 - Informal workshop about tau reconstruction and SUSY analyses with tau
 - □ 13 presentations, with a lot of open discussions
- □ When?
 - Last week (16/10 18/10)
- Who?
 - 18 participants from Bonn, Freiburg, Heidelberg and DESY
- □ Why?
 - Similar interests among the groups
 - Knowing each other and harmonize our work

Participants

Universität Freiburg:

Stanley Lai Nico Matthias Meyer

Universität Heidelberg:

Jochen Dingfelder Christoph Anders

DESY:

Philip Bechtle
Michael Böhler
Sylvie Brunet
David Côté
Björn Gosdzik
Sebastian Johnert
Dörthe Ludwig

Universität Bonn:

Klaus Desch
Peter Wienemann
Sebastian Fleischmann
Robindra Prabhu
Christoph Ruwiedel
Jieh-Wen Tsung
Carolin Zendler

Topics

- Tau reconstruction (calo-seed algorithm)
 - current status and performance
 - ideas and ongoing work for improvements
 - □ focus on low p_T taus
 - quite some discussion about software tools
- Tau ID validation
 - ongoing Z→ττ study
 - lacktriangle methods of au energy, efficiency & fake rate calibration
- Tau SUSY analyses
 - endpoint determination of $\chi_2 \rightarrow \tau^+ \tau^- \chi_1$ decays
 - measurement of tau polarization in stau decays
 - extensions of the ongoing analyses (ideas)

Tau reconstruction

Current tauRec performances

Recent combined cluster \rightarrow topocluster migration nicely improved the tauRec performances!

rejection

Stan Lai & Nico Meyer (Freiburg)

Rem

Ideas of algorithm improvements

- Current:
 - τ = isolated cluster + 1-3 tracks ($\Delta R < 0.3$)
- \square Plan: exclusive τ reconstruction
 - $\tau^{\pm} = \pi^{\pm} (\pi^{+}\pi^{-}) + n\pi^{0}$
 - using subcluster, with explicit π^{\pm} and γ/e^{\pm} ID
 - optimization of (topo)clustering algorithm for taus
 - detailed trk-cluster matching (neutral hadron veto?)
 - pi0 cluster identification
 - cuts on $\#\pi^0$? on π^0/π^+ separation?
 - exclusive reco of resonances: $m(\pi^{\pm} n(\gamma \gamma)) \approx m(\rho^{\pm}, a_1^{\pm})$
 - overall shower profile
- DESY, Freiburg

Bonn,

Heidelberg

- $\ \Box$ explicit $\gamma \rightarrow e^+e^-$ and $K^0 \rightarrow \pi^+\pi^-$ reconstruction (and veto)
- { track selection (e/μ veto, background consideration)
- □ variables used by D0 (H1, CDF, ...)

Calorimeter response for single taus (25 GeV) . (EM topo clusters)

Opening Angle Between π^{\pm} and π^{0}

$\Delta R(\pi,\pi^0)$ versus Energy of τ

EMTopo 0.03<R<0.1 10307 entries

	0 cluster	1 cluster	2 cluster
τ->ρ	40%	43%	15%
τ->a _i	32%	44%	19%
τ->π±	66%	29%	5%

Jieh-Wen Tsung (Bonn)

Tools for tau reconstruction studies

- All ongoing tauRec work based on CBNT ntuples and root macros
 - CBNT ntuples no longer supported in Athena
 - Need replacement soon
- Solution: tauView ?
 - provides short-term (ntuple) and long-term (AOD format) solutions, and benefit from existing tools
 - also an opportunity to contribute to development of ATLAS computing model
 - No clear concensus during the workshop

Tau ID validation

Tau ID validation

- □ Z→ττ or W→τν decays usable as tau control samples
 - Z→ττ analysis ongoing here by Sebastian
- Data-based methods for Tau ID validation
 - First data: fake rate from dijets near Z mass
 - tag: high trk-multiplicity, probe: reconstructed as tau
 - Few pb⁻¹: tau efficiency from Z decays
 - trigger eff with tag & probe Z→ττ
 - tau-ID eff from $(Z \rightarrow \tau \tau)/(Z \rightarrow \ell \ell)$ ratio
 - More data:
 - tau energy-scale from width of $Z\rightarrow \tau\tau/\ell\ell$ peak (data/MC)
 - simultaneous analysis of Z→ττ/jj/ℓℓ/τj/τℓ...

SUSY analysis with τ

Endpoint of $\chi_2 \rightarrow \tau^+ \tau^- \chi_0$ decays

- **□** Endpoint of mττ related to m χ_1 m χ_2 & mτ̃
 - no sharp endpoint with taus...

...but fitted turning-point shown to be proportional to endpoint

one tau typically very soft

q

Carolin Zendler, Til Nattermann & Peter Wienemann (Bonn)

Tau polarization in stau decays

- □ In $\tilde{\tau}^{\pm} \rightarrow \tau^{\pm} \chi_1$, polarization of tau gives infos about the stau composition
- Observables sensitive to tau polarization:
 - mττ shape
 - fraction of π^{\pm} energy in $\tau \rightarrow \rho^{\pm} \nu$ decays (R)

Extending ongoing analyses (DESY)

- Four main improvement avenues:
 - reconstruction of very soft taus
 - SUSY-data interpretation with additional observables: mττ, mττj, mτj (Dalitz style?)
 - additional SUSY models (GMSB, ...)
 - modified event selection

Event selection strategy (DESY)

- Ongoing analyses:
 - exclusive precision measurement (e.g. Bonn)
 - inclusive discovery measurement (large missing E_T)
- Proposed strategy:
 - exclusive *discovery* measurement $(\chi_2 \rightarrow \tau \tau \chi_0)$
 - □ smaller missing E_T cut than inclusive measurements
 - use tight lepton-tagging instead
 - higher signal efficieny than precision measurements
 - can afford lower signal purity

Summary

- Very succesful workshop!
 - everybody learned a lot
 - collaboration nicely established with Bonn,
 Freiburg and Heidelberg (especially for tauRec)
- Three main topics:
 - tau reconstruction algorithm
 - tau ID validation
 - SUSY analysis with taus