

WP76 status summary

XDAC review meeting 14-16.5.2012

C.Youngman for WP76

EuropeanXFELContent

- Electronics DAQ and slow control
- Software
- Slice test
- Integration
- Conclusions

European

XFEL Devices to control, monitor, readout, analyze...

Optics (WP73)

- KB mirrors for focusing
- Refractive lens focusing
- Monochromatic
- Collimator
- Slits
- Attenuators

Sample environment (WP79)

- Particle injector
- Cryostat
- Precision stages
- Beam diagnostics (WP74)
 - Intensity monitors
 - Beam positioning monitor
 - Photon-electron spectrometers
 - K-monochromator
 - Screens and cameras
- Vacuum systems (WP73, 8x)
 - Turbo pumps
 - Ion pumps

- Laser systems (WP78)
 - Pump laser and diagnostics
- Vacuum systems (WP73, 8x)
 - Turbo pumps
 - Ion pumps
- Complex detectors (WP75)
 - 2D pixel cameras
 - pnCCD
- Simple detectors (WP8x)
 - e- and ion TOF
 - Diodes, BS-foils, diamonds
- Other control systems
 - e-machine
 - Undulator
- DAQ sub systems
 - VETO sub-system
- Software systems
 - DM and SC devices

Long list = need common solutions for entire control-DAQ-DM-SC chain

XFEL Electronics for control and DAQ

Task

- Attribute configuration, monitoring and run state driving
- Data readout and processing

Solution

- Ethernet for control and monitoring
- 10GE Ethernet for data streaming (readout)
- Low latency protocols for feedback systems
- FPGA data processing (formatting, rejection)
- e-machine timing board for synchronization

Implementation status on next slides

- Fast ADC = diodes, diamonds...
- High-Speed digitizers = TOFs, VMI, XBPM, XGDM, PES...
- Common backend DAQ = 2D, TOFs...

Outlook

See comments on slides

Prototype single width MTCA e-machine Timing receiver Board (Stockholm University / DESY)

WP76

XFEL Fast ADC

Task

Acquire 4.5MHz pulse data from 0D detectors

Solution

- Use Struck SIS8300 MTCA.4 Fast ADC board
 - 125 MHz, 16 bit resolution, 10 channel
 - Vertex 5 (data and VETO processing)
- Signal shaping
 - Build custom Rear Transition Module

Status of tests with APD

- Custom RTM developed with Peter Goettlicher (DESY)
 - Signal shaping increasing the pulse length and maintain the amplitude information
- Processing in FPGA or CPU and streaming of data
- System was tested with beam and APD module at Petra3

Outlook as test bed

- VETO source and related signal generation
- Using Simulink for algorithm implementation
- Baseline device server s/w control implementation for MTCA.4

XFEL High-Speed digitizers

Task

 1 – 7GS/s : 14 – 8 bit resolution digitizers for TOF, VMI, etc.

Solution

Use SP Devices vendor digitizer family

Product	Resolution	Maximum Sample Rate	Analog Bandwidth	Channels	On-Board Memory Size	Interface	
SDR14	14bit in	800 MSPS in	500 MHz	2 in	2 x 500 Mbyte	USB, cPCIe/PXIe, PCIe	
	14bit out	1600 MHz out		2 out			
ADQ108	8 bit	7 GSPS	2 GHz	1	1024 MS	USB, cPCIe/PXIe, PCIe	
ADQ412	12 bit	1.8/3.6 GSPS	2/1.3 GHz	4/2	700 MS	USB, cPCIe/PXIe, PCIe	
ADQ1600	14 bit	1.6 GSPS	800 MHz	1	500 MS	USB, cPCIe/PXIe, PCIe	
ADQ DSP	-	-	-	-	1 GByte	USB, cPCle/PXle, PCle	

- Contract signed to add 10GE and SFP low latency functionality to existing PXIe layout on MTCA board
 - Mother board common to product family digitizer specific functionality on mezzanine

Status and outlook

- Currently testing ADQ1600 PCIe
- Expect prototype board Q3/2012, product Q4/2012

European XFEL Common backend DAQ

Task

- Combine 2D camera module data
- Reformat and process data
- Push frame ordered data trains to PCL

Solution

- Control camera front end modules using custom RTM clock and control module interfaced by DAMC2 board
- Data pushed to ATCA train builder board
- Train builder pushes data to PCL using Round-Robin distribution

Status

- Prototype clock and control board onsite, s/w device in preparation
- Prototype train builder board delivery planned 9.7.2012

Outlook

Expect working LPD (2 tile or 1/4Mpxl) by end of 2012

Data

Prototype Train Builder ATCA Board (STFC)

(DESY/FEA)

European **XFEL** VETO System for data reduction and memory optimization

Task

- Optimize picture quality of 2D detectors, alleviate limited frame capacity in ASICs (~300-700 frames)
- Replace bad frames with new ones in ASIC before read out and transmission
- Data reduction discard useless data before transmission

Solution

- FPGAs of diagnostics and detectors provide bunch information with low-latency
- Configurable central VETO unit per experiment decides on bunch quality
- FPGAs of (all) detectors receive the decision and react on it
- Using a common protocol with beam based feedback system

Status and outlook

Currently testing protocol f/w modules on DAMC2

WP76

XDAC meeting 14.5.2012

XFEL PBS slow control for expts, optics, diags

Purpose - Control PBS "slow" experiment and tunnel systems (pumps, motors, gauges, valves...)

Solution – Beckhoff distributed EtherCAT PLC h/w

- Industry standard COTS with real time Ethernet protocol
- Technology provides required physical layer topologies (loops, trees...)
- Already used in XFEL undulator system, PETRA3

Firmware – PLC programming environment

- Platform Windows XP (also Windows CE and Windows 7)
- Provides FSM, main business logic; h/w synchronization (axes coupling);
- Controllable by s/w device running in linux-box (via TCP);
- Logging and high level administrative tools provided

Implementation – status

- PLC f/w code generation driven from DB of h/w connections (need cable DB KDS manpower)
- Validation of PLC version running
- Devices integrated: Varian pumps, Maxi and MKS gauges, Gauge, step and pezos...

Outlook

- Migrate to TwinCAT 3 environment (allows embedded C/C++ in f/w "simulink" type development)
- Complete integration with control s/w and with users
- Replace current csv code driver by DB

PLC h/w terminals

XFEL PBS homogeneous s/w framework

Purpose – provide a single s/w environment for control, DAQ, DM and SC(analysis)

Solution – standards

- Proper standardization results in modular, scalable and homogeneous software
- use C++ / Boost / Python / PyQt as core technologies
- Do not re-invent the wheel, use high quality libraries: Boost (shared_ptr, any, msm, function, asio), PyQt, OpenMQ, Log4cpp, Clmg, etc.

Issues of specific interest for control and DAQ

- **s/w or h/w instances** to control are called **Devices = plugins created by factories** in Device servers
- **communication:** use MOM broker (**OpenMQ** now) and **p-2-p** for large volume data transfer
- **configuration** and reconfiguration: **XML and XSD** (i.e. self-describing) driven (cmd line, file, DB)
- **flow control:** all devices are **FSM** enabled (message event driven)

Implementation – status

- first s/w release mid-March contains complete toolkit set
- Devices for h/w (MPOD, Beckhoff...) and s/w (PC layer, Data feeders...) online
- Generic GUI integration in progress

Outlook

- Final DB design and update of s/w API starts 1.6.2012
- Upgrades driven by requirements (OpenMQ to ZeroMQ?)

11

XFEL PBS s/w device big picture

XFEL PBS GUI development

Hot off the press

- generic, multi-purpose, cross-platform GUI
- self explaining, default layout for any device
- customizable user panels
- fully integrated with s/w framework
 - many features
- Widgets are plugins 3rd party ones can be used with a simple wrapper (e.g. have tested with Taurus widget)

Generic GUI

- Framework XML and XSD usage = self description
- Configuration attributes immediately seen
- FSM states immediately drivable
- Device driven not code generation

Outlook

Include user-role driven (database)

...

Customize composition area

XFEL Device integration

Devices s/w in implementation

- MPOD Wiener+Iseg power supplies
- Fast ADC system
- Beckhoff
- Clock and control (TB and LPD needed soon)

Feedback coming in from users in the field

14

XFEL Slice Test: DAQ through DM to SC

WP76

XFEL Hardware status

- Purpose of h/w is to test all features of DAQ/DM architecture
 - Network, computing, storage, file systems, s/w, deployment, dCache...
- Final width of slice is 16 input TB input links = 1Mpxl
- Status of first ½ of slice 10.5.2012:

h/w	function	#	Spec	Status
PowerEdge R610	PC layer	8	3GHz, 2Socket, 6Core, Intel X5675, 96GB, Intel X520 DA2 dual 10GbE NIC	running
PowerEdge R610	Metadata server	2	3GHz, 2Socket, 6Core, Intel X5675, 96GB, Intel X520 DA2 dual 10GbE NIC	running
PowerEdge C6145	Computing cluster	2	2.6GHz, <u>4Socket, 16Core, AMD 6282SE, 192GB</u> , Intel X520 DA2 dual 10GbE NIC	running
Cisco 5596UP	10GbE switch	1	48 ports (extendible to 96), wire speed, SFP+	running
PowerEdge C410x	PCIe chassis	1	8 HIC Inputs,16 x16 PCIe Sleds	running
NVIDIA M2075	Computing	4	PCIe x16 GPGPU	running
IBM x3650M4	xTB servers (~80TB fast SAS HDD)	6-8	2.9GHz, 2Sock, 8Core, Intel E5-2600, 96GB, Mellanox ConnectX-3 EN Dual NIC	ordering
IBM EXP25XX	xTB ext. chassis (slower)	~2		ordering
Demonstrator	ТВ	2	Board and ATCA crate	arriving 12.7

- Second ½ of slice will be ordered Q/3 or 4 (or later)
 - when result feedback is available, etc.

XFEL UDP bidirectional test (netperf and mpstat)

Two hosts (1+2), each dual 10Gbps NIC, connected via switch, settings:

- Socket buffer size (128kB-4MB)
- Adjusted kernel parameters
- MTU 9000 (Jumbo frames)
- CPU affinity enabled

 net.core.rmem_max = 16777216
 # 131071

 net.core.wmem_max = 16777216
 # 131071

 net.core.rmem_default = 10000000
 # 129024

 net.core.wmem_default = 10000000
 # 129024

16

net.core.netdev_max_backlog = 300000 # 1000

Bidirectional stream

UDP MTU 9000	send1	recv2	send2	recv1	send1	recv2	send2	recv1
buffer size B	512k	512k	512k	512k	1M	1M	1M	1M
bw Mb/s	9926	9927	9927	9927	9927	9927	9927	9927
packet loss %	0		0		0		0	
cpu sys %	27	26	28	25	26	26	28	25
cpu soft %	5	0.1	5	0.1	6	0.1	5	0.1
intr/s	8k							

Dual NIC allows concurrent read/write at wire speed, no packet loss for UDP

European

XFEL Slice Test: PCL layer node work

Task

- Receive detector format data from FEI layer (TB)
- Process data (monitor, reject, format, aggregate)
- Write to data cache storage layer in final HDF5 format

Implementation

- PCL node s/w
 - is a framework device
 - has r,w worker threads and multi threaded processing pipeline
- Feeder device written for testing (drives PCL node)
 - uses LPD and TB detector formats
- Writes data using framework HDF5 API
 - uses vectors of attributes (images, image-descriptors, etc.)
- Processing pipeline implements
 - CRC calculation, later detector specific

Status

- PCL device software now being tested
 - network performance results concurrent r,w results verified
 - Measuring concurrent r,w,processing performance

Outlook

Continuing tests processing, iWARP, etc.

XFEL Slice Test: Data Management services

Task

- Data formatting
- Generic scheme for data files and data objects
- Data Storage and access
- European wide authentication system (AAI)
- Data archiving and export services

Implementation

- Serialization of data structures (Hash) to HDF5
 - Optimized for high speed transfer avoid memory copying, buffered writes and reads
 - Dynamic configuration and discovery of data format
- Naming convention
 - Directory structure and file names
 - Metadata definition -> DB schema
- Storage
 - Specialized and optimized setup for online data cache
 - Cluster file systems, NFS4.1 for offline storage
- AAI
 - Central/federated authentication system
 - Local facility based authorization
- Data archiving using dCache system, WAN transfer using gridFTP and bbcp tools

Status

- Released framework HDF5 related APIs
 - performance up to 2.4GB/s into RAM disk, storage limited performance
- Definition of file naming convention in progress
- Storage tests
 - Waiting for hardware to be delivered
 - Further tests foreseen within CRISP project
- AAI
 - CRISP/WP16 friendly user test phase of the prototype system involving >20 users from European institutes
- Data transfers:
 - Observed dCahce performance up to 600MB/s and up to 200MB/s to archive, no show stoppers seen
 - Test of bbcp and gridFTP tools performed, 80MB/s between SLAC and DESY

Outlook

- Database start definition of database schema (new manpower from 1.06.2012)
- Configuration and tests of storage systems and cluster file system

European

XFEL Slice Test: Scientific Computing

Task

- Adapt/Write analysis code to be a device (C++ or Python)
- Set up a device based scientific workflow system
- Enable GUI to configure workflows, do project management, visualize flowing data
- Provide a basic but generic image processing API for CPUs & GPUs

Implementation

- Configurable generic input/output channels on devices
- TCP based asynchronous p-2-p connection for remote IO channels
- Asynchronous (shared-)memory connection for *local* IO channels
- Automatic (API transparent) connection type selection (remote/local)
- Broker-based communication for (inter-device) workflow coordination
- Non-intrusive, plug-able serialization interface for data classes
- Drag & Drop of devices from GUI navigation pane into workflow
- Write abstract image interface class on top of Cimg and Cuda libs.

Status

- First algorithms are being adapted (EMC, CrystFEL)
- Work started on image and serialization interface
- Code on workflow system has just been started, needs more time

Outlook

 Use slice test hardware to test distributed computation of CrystFEL algorithms (peak-detection, HKL-indexing, etc.)

19

European XFEL

PBS experiment, optics, diagnostics, e-machine integration – SPB experiment example

Component functionality to control / interface

- Diagnostics
 - stations, cameras, screens, eTOF...
- Optics
 - Focusing CRL, KB... components
 - Attenuators, apertures, slits...
- Experiments
 - Sample injection and laser systems
 - eTOF, diodes, 2D cameras, spectrometer...
- e-machine and undulators

Component (expt. only) control channel count

- Digital In/Out (412/52)
- Analog In/Out (168/9)
- Serial IO (39)
- Relays (48)
- Axis (241)

- Digitizers (1)
- Fast ADCs (28)
- Single shot cameras (9)

20

- Pixel cameras (2)
- • •
- Starting with SPB have produced a detailed description of DAQ and control requirements: crates, racks, power, networks, Beckhoff

WP76

XFEL Conclusions

- Hardware…
 - Setting up joint electronics and FPGA group has helped enormously
 - All (most) use case detector types foreseen
- Software
 - First release exposed to non core device developers
 - DB design and API implementation coming soon
 - GUI development looks good
- Slice and other tests
 - As proof of architecture: positive initial results
 - As test platform for DAQ, DM and SC what we need
 - Field tests of devices in progress
- Integration
 - With experiments, diagnostics, optics and e-machine progressing
 - SC analysis algorithm integration progressing
- Future still much to be done most important end of year targets:
 - Fully operational control-DAQ-DM-SC slice test with associated s/w
 - Prototype level LPD, FastADC and Digitizer h+f+s/w systems
 - DB integrated, e-machine interface
 - Beckhoff cable DB and h/w installation prototypes
 - Feedback from data rejection, reduction, processing user workshop

XFEL Timing and Synchronization Systems for XFEL

	Timing System (WP28)	Optical Synchronization (WP18)
Provides	Clocks, Triggers and Data	Clocks
Stability	Less than 10ps	Less than 50fs
Applications	DAQ and Detector sequencing	Synchronize lasers to beam

- Timing master distributes reference clock with encoded data
- Drift is actively compensated
- Transmits events used fur triggers (START) and bunch clocks
- Transmits bunch pattern and related information

- Optical synchronization is required to be in phase with beam
- Timing is required to select the correct pulses

XFEL WP76 members

Onsite

- C.Batindek electronics intern
- D.Boukhelef PCL and DM
- N.Coppola Beckhoff
- S.Esenov core s/w and devices
- B.Fernandes electronics FPGA
- P.Gessler electronics
- B.Heisen core s/w and SC
- H.Hoehne Bechof intern
- I.Koslova core s/w and Python
- L.Maia DB and API (>1.6.2012)
- A.Parenti commercial cameras
- N.Shastri electronics intern
- J.Szuba slice test
- J.Tolkiehn Beckhoff
- K.Weger core s/w and GUI
- K.Wrona cores s/w and DM
- C.Youngman devices

Advertised

Installation cable DB

To fill 2012

- DM scientist
- s/w manager
- DB manager
- DAQ scientist
- s/w developer
- Experiment support (devices)
- Electronics technician
- Analogue electronics (WP75)
- Electronics technician (WP75)

XFEL PBS WP76 mandates: DAQ, control, DM and SC

The PBS controls group (WP76) tasks in a Nutshell:

- DAQ and control = h/w and f/w control and readout systems and s/w interfacing
- Data Management (DM) = meta- and data handling h/w and s/w development, latter homogeneous framework for all PBS tasks
- Scientific Computing (SC) = data processing and analysis environment

Task areas and what this means

- Experiments
 - DAQ and control = experiment integration and running of experiments
 - DM = data and meta-data storage, processing, AAA, etc. for experimenters
 - SC = pipelines and processing environments for online and offline analysis for experimenters
- Beam line Optics
 - DAQ and control = expt. control of optics systems (offset mirrors, attenuators...) and by WP73
 - DM = provide required data and meta-data services
- Diagnostics
 - DAQ and control = expt. control and configuration and by WP74
 - DM = provide required data and meta-data services
- Machine
 - Provide PBS side machine interfaces (e.g. s/w = to DOOCS and f+h/w = to MPS, interlocks...)
- Undulators
 - Provide PBS side undulator interface to WP71

XFEL TB demonstrator board testing

Test Status

- FMCs 10G loopback (working)
- DDR2s Read & Write (preparing)
- SRAMs Read & Write (preparing)
- QDRIIs Read & Write (started)
- Clock distribution (partially tested)
- Cross-point switching static (working) dynamic (to do) operation
- Serial bus control from PC (Working)
- Ethernet GbE front panel control from PC (to do)
- Program FPGAs from System ACE card (Working)
- I2C chain (Temp monitoring devices, hot switch off) (working)
- Verify operation in ATCA Crate (front panels next week)
- Measure Power consumption

Schedule

- 16.5.2012 Order 2 more TBs
- 01.6.2012 Ship 1 TB to Hamburg
- 20.6.2012 Test in Hamburg
- 10.7.2012 thru12.7.2012
- 12.7.2012 TB&CC meeting at XFEL

Courtesy: John Coughlan (STFC) 10.5.2012

27

XFEL MTCA.4: 2U small crate with 6 slots

Development with PowerBridge and Schroff

- 2U high MTCA.4 crate with
 - 4 slots with double size AMC with RTM
 - > 2 slots with double size AMC
 - → 1 MCH
 - J Power Module
- Prototype expected in May
- When successfull, plan of
 - 4U high 12 slot version and
 - > 6U high 12 slot version with full redundency

