
DPD Building with
EventView & Future

Developments
Amir Farbin

UTA

1

Overview
• Why build DPDs?

• What is EventView... a reminder.

• Survey of the types of info stored in the
DPD.

• How to create each of these in
EventView Framework.

• How each of these will be represented in
the POOL-based DPD created by EV.

2

Perspective

• AthenaROOTAccess provides direct access to AOD files for
fast-turn-around analysis...

• but AOD files will be too big to use as the input to
AthenaROOTAccess on local resources

• real use-case is creating AOD-like DPDs first...
AthenaROOTAccess on DPDs.

• Typical reduction of AOD ➞ DPD size is ~10x (looking at
various EV-based AANTs DPDs created by different groups).

• Mostly thin, slim, and new UserData... little skimming today.

• The operations required to make the DPD are non-trivial.

3

Perspective II
• Currently, EV is used in rel-12 to build custom AANT DPDs in all

but one Analysis working group.

• We see that one framework and a common set of extendable
tools can meet a wide range of physics use cases.

• EV Tools and View packages have been rigorously validated
through detailed event-by-event comparisons with other code
in context of the CSC notes.

• This has been a lot of work.

• Do we want to do this every time 2 different people use 2
different analysis code?

• Moving these packages from AANT to POOL-Based DPD should
be very easy.

4

Stages of Analysis
• Re-reconstruction/re-calibration- often necessary.

• Algorithmic Analysis: Data Manipulations ESD→AOD→DPD→DPD

• Skimming- Keep interesting events

• Thinning- Keep interesting objects in events

• Slimming- Keep interesting info in objects

• Synthesis- Build new data structures from building blocks. Encapsulate
the results of algorithms.

• Basic principle: Smaller data → more portable & faster

• Interactive Analysis: Making plots/performing studies on highly reduced
data.

• Statistical Analysis: Perform fits, produce toy Monte Carlos, calculate
significance.

T
ie

r
1/

2
T

ie
r

3

Focus on Thinning and
Synthesis today... the

others are easy.

5

Stages of Analysis
• Use TAG to quickly select subset of events which are interesting for analysis.

• Starting from the AOD

• Stage 0: Re-reconstruction, re-calibration, selection (AOD)

• Redo some clustering/track fitting, calculate shower shapes, apply corrections, etc...

• Typical: 250 ms/event, In: 75% AOD, out 50% AOD

• Stage 1: Selection/Overlap removal/complicated analysis (AOD/DPD)

• Select electrons/photons→find jets on remaining clusters→b-tag→calculate MET

• Perform observable calculation, combinatorics + kinematic fitting, ...

• Typical: 20 ms/event, In: 25% AOD, Out: 10% AOD

• Stage 2: Interactive analysis (AOD/DPD)

• Final selections, plots, studies.

• Prototype earlier steps!

• Typical: 0 ms/event, In: 1% AOD, Out: 0

• Stage 3: Statistical Analysis

Ph
ys

ic
s

G
ro

up
A

na
ly

si
s

G
ro

up
Pe

rs
on

al

6

• ATLAS will record 200 Hz of data, regardless of luminosity ➔ 109 event/year.

• CM Assumption 700 Analyzers: 12 tier 2 CPU/person for analysis at any give time.

• Assuming perfect software/hardware (10 MB/s read in = ROOT limit).

Stages vs Resources

Laptop
1 Cores

Tier 3
25 Cores

Tier 2
10 Persons
100 Cores

Tier 2
100 Persons
1000 Cores

1 Hour 0.0001% 0.0035% 0.0140% 0.1398%

Overnight 0.0017% 0.0419% 0.1678% 1.6777%

1 Week 0.0235% 0.5872% 2.3487% 23.4874%

1 Month 0.1007% 2.5165% 10.0660% All

1 Hour 0.0016% 0.0400% 0.1600% 1.6000%

Overnight 0.0192% 0.4800% 1.9200% 19.2000%

1 Week 0.2688% 6.7200% 26.8800% All

1 Month 1.1520% 28.8000% All All

1 Hour 0.3600% 9.0000% 36.0000% All

Overnight 4.3200% All All All

1 Week 60.4800% All All All

1 Month All All All All

St
ep

 0
St

ep
 1

St
ep

 2

W
or

ki
ng

gr

ou
p

on

T
ie

r
2

A
na

ly
si

s
gr

ou
p

on

T
ie

r
2

Si
ng

le

A
na

ly
ze

r
on

 T
ie

r
3

7

• ATLAS will record 200 Hz of data, regardless of luminosity ➔ 109 event/year.

• CM Assumption 700 Analyzers: 12 tier 2 CPU/person for analysis at any give time.

• Assuming perfect software/hardware (10 MB/s read in = ROOT limit).

Stages vs Resources

Laptop
1 Cores

Tier 3
25 Cores

Tier 2
10 Persons
100 Cores

Tier 2
100 Persons
1000 Cores

1 Hour 0.0001% 0.0035% 0.0140% 0.1398%

Overnight 0.0017% 0.0419% 0.1678% 1.6777%

1 Week 0.0235% 0.5872% 2.3487% 23.4874%

1 Month 0.1007% 2.5165% 10.0660% All

1 Hour 0.0016% 0.0400% 0.1600% 1.6000%

Overnight 0.0192% 0.4800% 1.9200% 19.2000%

1 Week 0.2688% 6.7200% 26.8800% All

1 Month 1.1520% 28.8000% All All

1 Hour 0.3600% 9.0000% 36.0000% All

Overnight 4.3200% All All All

1 Week 60.4800% All All All

1 Month All All All All

St
ep

 0
St

ep
 1

St
ep

 2

W
or

ki
ng

gr

ou
p

on

T
ie

r
2

A
na

ly
si

s
gr

ou
p

on

T
ie

r
2

Si
ng

le

A
na

ly
ze

r
on

 T
ie

r
3

• For LHC data value it is necessary to do analysis in stages and make DPDs,
because:

• The full AOD for skimmed samples are too large to fit on local resources (eg
laptop or even tier 3). (1 TB= 10 M full AOD events or 1% of 1 year’s AOD)

• It would take too long to do all steps of an analysis every time you want to
make a new plot or change a cut.

• Even making simple plots which require no processing on 1 KB-per-event DPDs
will take hours to go through reasonable amounts of data..

• Sophisticated processing of events can easily dominate over IO (see my talk at
the 2006 Analysis Model Workshop).

• Ex: Full top analysis optimistically takes ~20 ms/event. This is equivalent to 200
KB/s AOD read-in.

• Your ROOT macro analysis of CSC data will not scale to LHC data-volumes.

7

Quick Reminder
• EventView/UserData are data (EDM) objects which

• keep track of what other EDM objects used in analysis.

• store information beyond what is in the AOD/ESD.

• Present a much nicer C++ interface than bare Athena, StoreGate, containers, and EDM objects.

• EventView Framework allows building analysis from modular pieces.

• An analysis is a chain of tools, which can be developed independently but will work together
because of EventView.

• Full flexibility of any Athena-based analysis... + more.

• EventViewBuilder Library is a large collection of generic tools which are chained and configured in
python (like reconstruction or anything else in athena).

• Users don’t need to write C++ to quickly get a lot of functionality.

• Defines basic concepts (eg Insertion, Looping, Association, ...) which can be extended by users.

• View Packages are collection of EVTools and configuration which produce standard DPDs.

• Serve nearly all physics and performance groups.

• All of this makes EventView a very powerful and widely-used DPD making framework.

8

D
PD

D
PD

DPD Building

• Keep the “good” electrons

• their associated tracks and clusters

• tracks and clusters in a cone

• Keep truth electrons coming from W, Z’s, or SUSY particles.

El
ec

tr
on

s
Ta

us
Je

ts

Tr
ut

h

Tr
ac

ks
C

lu
st

er
s

El
ec

tr
on

s
Ta

us
Je

ts

Tr
ut

h

Tr
ac

ks
C

lu
st

er
s

Thinning

Ex
am

pl
e

9

How to thin?
• The thinning service simply allows users to mark objects they want written

out... does not make any decisions.

• What you need to thin (not EV specific):

• Select “seed” objects. (Requires physics input)

• Mark them to be saved.

• Follow each seed object and mark their constituents (ie tracks & clusters)
to be saved.

• Find objects in cone around the seed, mark them to be saved. (Requires
physics input + matching)

• EV tools have been doing this type of operation for almost 2 years now... Easy
to do, documented in tutorials, requires only job options. Lots of people in
ATLAS use these mechanisms.

• Since the physics decisions and DPD technology are separated in EV... all we
needed to do was add one new tool to allow EV to thin and create POOL-
based DPD (Kyle has put it into 13.0.30).

• Allows completely standardization of the thinning process. This works for
everything (reco, truth, fastsim, trigger).

• BTW, this means that current EV analyses should be easily updated to the
POOL-based DPD format (and if you like, simultaneously create old ones, like
AANT).

EVMOToolLooper

Inserter

Inserter

Inserter

FinalStateLooper / Jets

FinalStateSLooper / Electrons

EVThinningTool

EVThinningTool

TrackAssociator

EVThinningTool

ClusterAssociator

EVThinningTool

10

Thinning/Slimming with
HighPtView

• HighPtView is fully configurable
via external options.

• Don’t need to expertise on
Athena, EventView, etc...

• Just follow instructions on how
set these options.

• This is DPD making for
AthenaROOTAccess made easy
and completely standardized.

• Lots of people already use this
mechanism to build custom
DPDs with EV.

• Ex: SUSY group has 7 different
HPTV/SV based DPDs.

InserterConfiguration={ "Electron":
 {"FullReco":
 [
 {"Name":"ElMedium", "Configuration":{"etCut":10*GeV}},
 {"Name":"ElLoose", "Configuration":{"etCut":10*GeV}},
 {"Name":"ElTight", "Configuration":{"etCut":10*GeV}}]} ,
 "Muon":
 {"FullReco,Muid":
 [{"Name":"MuSUSY",
 "Configuration":
 { "ContainerKey" :"MuidMuonCollection",
 "etCut" : 15*GeV,
 "onlyHighPt" : False,
 "relativeIsolationCut" : 1.,
 "useChi2FromCombinedMuon": True,
 "chi2NdofCut":5,
 "chi2MatchCut":20,
 "deltaRCut":.1,
 "RemoveOverlapWithSameType" : False,
 "InsertedLabels":["Muid", "Muon","Lepton"],
 }},
 {"Name":"MuDefault"}]}}

Some of this would be replaced by
DetailLevel= [“POOLDPD”, ”El_Info:ClusterInfo”, ”Ph_Info:ClusterInfo”,
”Ph_Info:TracksInCone”]

DPDOutputList= [“ElectronContainer”, ”MuidMuonCollection”, “ElectronShowerEgDetail”,
”TrackParticleCollection”,...]

pathena MyOptions.py HighPtView/HighPtViewDPD_topOptions.py --inDS
csc12.005406.SU8_jimmy_susy1.recon.AOD.v130030 --outDS MyDPD

MyOptions.py

11

DPD Contents
• Two types of DPD:

• “Performance” DPDs: subset of information/events necessary for calibrations and
performance studies. For early data or group wide DPD. Necessary to speed up iterations
and/or use local resources.

• “Analysis” DPDs: Tailored to specific analysis and user preferences.

• Two categories of information:

• Information originally in the AOD (possibly re-reco’ed, re-calibrated, or corrected):

• Ex: Tight/Medium Electrons, their tracks and clusters, and every track within cone 0.1
around them and the closest topo-cluster.

• All true Electrons which come from a t->Wb->e nu jet chain.

• Information not in AOD, often referred to as UserData: (Example)

• “Labels”: The fact that the electron is Tight or Medium, it was used in W reco... Flags that
the true electron was reco’ed as Jet or Tau... that the true electron came from a W...

• The association between the Electron and the tracks/clusters around it.

• The association between the true, reco, trigger Electron.

• Composites Objects (or just their kinematics)

• Event Shape Variables etc...

12

“UserData”
• Yesterday we saw that many groups had added to their

ntuples information which was not originally in the
AOD.

• Object quality info (eg Tight Electron flag)

• Matching info (Truth Match, Trigger Match)

• Event Quantities (sphericity)

• etc...

• Many of these are calculable on the DPD in ROOT, but

• often one double (per object?) is all you need in
the rest of the analysis, so you can reduce DPD
size by not saving the inputs to the calculation.

• you can save a lot of ROOT processing time by
caching the result in the DPD.

• often very convenient to have these quantities
pre-calculated.

• With HighPtView and most other EV-based
DPD you can make efficiency, resolution, scale
plots for any reco or trigger object with
single-line ROOT commands.

Histograms

Truth

Atlfast

Trigger

Full reco

Event info

User Data
Reco Match
Kinematics

Analysis

User data

AOD detail info

Trigger match

Truth match

Kinematics

AOD info

A. Shibata

13

EventView is “UserData”
• How can you tell why an object is in the

DPD?

• EventView keeps pointers to the objects in
the AOD, along with labels.

• Provides simple interface to get objects:

• std::vector<const Electron*> *TightElectrons =
ev->finalStateObjects<Electron>(“Tight”);

• std::vector<const INavigable4Momentum*> *Everything =
ev -> finalStateObjects<INavigable4Momentum>();

• bool isTight = ev->hasLabel(obj,”Tight”);

• std::vector<std::string> ElLabels = ev ->
labelsFor(obj);

• EventView can be written by POOL into the
DPD along with the AOD objects. (Needs T/P
separation for speed optimization).

• EventView should be accessible through
AthenaROOTAccess, just like anything else.
(Needs work/testing).

El
ec

tr
on

s
Ta

us
Je

ts

Tr
ut

h

Tr
ac

ks
C

lu
st

er
s

Tight,
WDaughterLoose

EventView

D
PD

14

ParticleView
• One of the concerns with EV has been the inability to

adjust overlap removal during DPD analysis.

• Idea:

• Use EventView framework to figure out what objects
overlap.

• Save result in ParticleView/EventView.

• ParticleView (being developed by Peter Sherwood):

• Keeps pointers to several “interpretations” of a
“physics” object.

• It is a particle (ie has 4 momentum). Presents the
kinematics of the “active” interpretation.

• Allows switching active interpretation.

• Similar nice interface as EventView... and accessible in
AthenaROOTAccess.

• ParticleView can also keep track of associations... like
truth, trigger matched objects, or tracks in cone.

El
ec

tr
on

s
Ta

us
Je

ts

Tracks

Ev
en

tV
ie

w

Tau

InCone

Particle
View

Jet

InCone

Particle
View

Loose

Tau

Jet

InCone

Particle
View

Electron

True
Electron

True
Jet True

Electron

Tight

Jet

15

More Powerful DPDs
 Truth0->Scan("El_p_T:El_eta:El_R_p_T:El_etcone","El_N>0&&El_p_T>15000")

* Row * Instance * El_p_T * El_eta * El_R_p_T * El_etcone *

* 18 * 0 * 105285.32 * 0.4091242 * 103055.27 * 510.9823 *
* 28 * 0 * 25344.389 * -0.613313 * 0 * 1010.6964 *
* 31 * 0 * 41348.116 * -2.036790 * 0 * 567.92218 *
* 42 * 0 * 55272.240 * -0.556607 * 52544.099 * 0 *
* 74 * 0 * 22167.001 * 0.4038631 * 21070.964 * 0 *
* 77 * 0 * 24399.744 * -1.552361 * 24093.357 * 1868.9583 *
* 79 * 0 * 48076.995 * 1.5331588 * 0 * 81.795562 *
* 90 * 0 * 117659.36 * -0.131803 * 0 * 1645.3580 *
* 90 * 1 * 17144.797 * 1.2736656 * 0 * 0 *
* 93 * 0 * 54085.071 * 0.7382863 * 53275.116 * 545.66790 *
* 93 * 1 * 32654.367 * 1.0285901 * 30818.634 * 1186.4563 *
* 102 * 0 * 41567.572 * 1.7180224 * 40147.962 * 616.00598 *
* 126 * 0 * 19774.637 * 2.1294892 * 19313.796 * 1417.4222 *
* 131 * 0 * 98802.467 * 0.3206566 * 94770.735 * 85.179977 *
* 134 * 0 * 100685.01 * -0.191601 * 99041.454 * 0 *
* 134 * 1 * 178483.36 * -0.258732 * 174524.14 * 2908.5776 *
* 159 * 0 * 47150.007 * -0.378147 * 46348.700 * 1449.7456 *
* 161 * 0 * 131364.69 * 0.8869048 * 131211.43 * 3154.5808 *

• DPD made with EV allow making
efficiency, resolution, scale, etc plots on
the ROOT prompt.

• AANT-based HPTV AANT shown
here... Same will be true of POOL-
based DPD.

TProfile JetRes("JetBias","JetBias",50,10000,100000)
FullRec0->Draw("Jet_C4_p_T-Jet_C4_T_p_T:Jet_C4_T_p_T>>JetBias",
"Jet_C4_N>0&&Jet_C4_T_Matched==1")

FullRec0->Draw("El_p_T","El_N>0")
(Long64_t)697
FullRec0->Draw("El_p_T","El_N>0&&El_T_Matched==0")
(Long64_t)49

16

Global View

 El Mu Ph Tau Jet
El (274) 69.3 +/- 2.8 0.7 +/- 0.5 3.3 +/- 1.1 2.2 +/- 0.9 16.8 +/- 2.3
Mu (326) 0.0 +/- 0.0 82.8 +/- 2.1 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0
Ph (9) 0.0 +/- 0.0 0.0 +/- 0.0 77.8 +/- 13.9 0.0 +/- 0.0 11.1 +/- 10.5
Tau (0) -- +/- -- -- +/- -- -- +/- -- -- +/- -- -- +/- --
Jet (7335) 0.5 +/- 0.1 0.4 +/- 0.1 0.2 +/- 0.1 0.7 +/- 0.1 47.6 +/- 0.6

•Simple ROOT macro on EV-made
DPD: Efficiency of seeing a True
muon as any type of object in
AOD (eg reco, trigger, or fast sim)
•DPD only stores the result of
matching... not every single type of
object in the AOD

17

Other “UserData”?
• Imagine that for every electron you would like to save into the DPD

• The distance to the closest Track and Jet, but not the actual Track
and Jet.

• The result of the newest MVA electron discriminant (eg Boosted-
decision tree), but not all of the inputs which go into it.

• a “correction” factor calculated from parameters in the database
and/or geometry info.

• And for the event:

• The energy in topo-clusters which don’t overlap with any selected/
overlap-removed high-pT object.

• STransverse Mass (or similar observable) which is time consuming
to repeatedly recalculate and requires selection/overlap-removal as
a prerequisite.

18

Storing “UserData”?
• How do you such put infomation into the new DPD and read it back in

AthenaROOTAccess?

• You can make a TTree (ie AANT) which you save in the POOL file.

• Only one client (ie Algorithm/Tool) can simultaneously access a given
branch in a TTree.

• Difficult to modularize your code.

• No reliable mechanism to link the observable to an object, eg the
Electron correction to the Electron object or the STransverse mass to
the objects used in the minimization.

• You can create a new Athena EDM object and write it out with POOL

• Requires expertise to implement the object, persistify with POOL, read back
in AthenaROOTAccess, worry about schema evolution.... just to put a single
double into the DPD.

19

The UserData EDM Object
• The UserDataBlock EDM object is a better solution.

• Create it:

• UserDataBlock *myUD=new UserDataBlock();

• Fill it in Athena (with any type):

• sc=myUD->put<int>(“Blah”,10.);

• sc=myUD->put<vector<double> >(“BlahVec”,vec);

• Store it into SG and tell POOL to write it out:

• sc=sgsvc->record<UserDataBlock>(“MyUserData”,myUD);

• DPDOutputList+=[“UserData#MyUserData”] # In job option

• Read it from SG and get values (in same job or on the DPD in Athena or AthenaROOTAccess):

• sc=myUD->get<vector<double> >(“BlahVec”,vec);

• Read it from the DPD file in pure ROOT (even without AthenaROOTAccess)

• MyUserData->Draw(“BlahVec”);

• Note, though the Athena side of UserData works and many of you have been using it, we need to
develop the DPD side.

20

UserData and EventView

• EventView and ParticleView hold
instances of UserData.

• Easy to fill/retrieve:

• ev->userData<double>(“UEventE”,x);

• pv-
>userData<double>(“Correction”,y);

• Natural book keeping:

• Keeps event quantities with the Event

• Keeps particle quantities with the
particle.

Ev
en

tV
ie

w

Tau

InCone

Particle
View

Jet

InCone

Particle
View

Loose

Tau

Jet

InCone

Particle
View

Electron

True
Electron

True
Jet True

Electron

Tight

Jet

UEventE: 10.23

STransverseMass: 823.32

Correction: 1.23

JetDR: 1.2

TrackDR: 0.7

21

Book-keeping
• Recall: EV Analysis are typically a series of

tools run in order.

• Because EV is so general, we commonly
apply the exact same analysis to Reco,
FastSim, Truth, and even Trigger objects.

• Branch tool allows you to simultaneously
consider different approaches.

• Powerful means of studying systematics.

• With a few lines of job Option, you can run
the same analysis several times with
different Jet, Muon, or Tau Algorithms,
selections/overlap removal, etc.

• Each branch results in it’s own self-
consistent EventView(s).

• Then you can event-by-event compare
results on your DPD.

Ntuple Output

Electron Inserter

EVToolLooper

Reco

NtupleDumper - Electron Branch

End

Combinatorics

TruthAssociator
KinematicCalc

Selection

Analysis

Muon Inserter

Jet Inserter

(cone04)

Tau Inserter

Branch Tool

Tau Inserter

Electron Inserter

Jet Inserter

(cone04)

Muon Inserter

Tau Inserter

Electron Inserter

Jet Inserter

(cone07)

Muon Inserter

Electron Branch Tau Branch 2

NtupleDumper - Tau Branch

NtupleDumper - Tau Branch 2
Electron

EVToolLooper

Truth

Truth Inserter
Vtx

Filter

Tau Branch

Truth
Analysis

NtupleDumper - Truth

Tau Tau2

Truth

Trees

Create Write POOL-based DPD
instead of AANT

22

EV in the DPD
• Composite Particles are also a form of

“UserData”.

• The EventView/ParticleView annotate
the DPD

• Keep pointer to all objects used in
analysis

• Use labels to keep the track of every
object’s role in the analysis.

• Preserve the relations between
objects (eg reco ↔ truth)

• Store any user generated data and
keep the relation with the particles,
events, and analysis branch.

Ev
en

tV
ie

w

Tau

InCone

Particle
View

Jet

InCone

Particle
View

Loose

Tau

Jet

InCone

Particle
View

Electron

True
Electron

True
Jet True

Electron

Tight

Jet

UEventE: 10.23

STransverseMass: 823.32

Correction: 1.23

JetDR: 1.2

TrackDR: 0.7

W top

LeptonicW LeptonicTop

23

EV in the DPD
• EV stores all of the

results of any EV analysis
in a format that is
common to all analyses...
regardless of what was
done in the analysis.

ScreenDump from Athena

• You can open someone
else’s POOL-based DPD,
print the EVs and look at
them in a Atlantis.

• You can read in the EVs in
Athena and continue
where the previous step
left off.

24

Evolution of EventView

25

New Features
• Thanks to Liza, the auto-generated Inserter Cut-flow

table now retain cut order... and look nicer.

• In development: automatic validation histograms

• histogram efficiency of every cut wrt to user-defined
variables (pT, eta, phi, isolation, ...)

• this is information which is lost during DPD making.

FullRecoLooperMuidTau1p3p.InsertersMuidTau1p3p_Electron_HighPtInser... INFO
CUT RESULTS: ElectronCollection
==
= Cut Num Passed Cut Effic. Cut Flow Eff. =
=--=
= All 1374 1 1 =
= ptCut 1374 1 1 =
= etCut 425 0.309 0.309 =
= eCut 425 1 0.309 =
= authorCut 425 1 0.309 =
= isolationCut 425 1 0.309 =
= caloCut 33 0.0776 0.024 =
= track Quality Cut 19 0.576 0.0138 =
= All_Preselection 19 1 0.0138 =
= Overlap 19 1 0.0138 =
= Inserted 19 1 0.0138 =
==

26

ParticleView
Implementation

• Interface/
Implementation is
similar to
EventView

• UserDataBlockAcce
ssor base class
provides the
UserData
interface... will likely
be used for
EventView also.

INavigable4Momentum

0..1

parent

UserData access

ParticleView::ParticleView

-m_byLabel:std::map<string, set<INavigable4MomentumLink> >

-m_activeInterpreation: INavigible4momentumLink*

-m_activeInterpretationLabels:std::string[1,*]

ParticleView

UserDataBlock

UserDataBlockAccessor<View->ParticleView>

1

Peter Sherwood

27

ParticleView/EventView Interplay

• The model which we are going towards:

• Object pre-selection: throw out particles
which you definitely will never use.

• Overlap determination: figure out how
every object overlaps with other
objects

• Interpretation: ask if the event can be
interpreted as something (eg 4 jets +
lepton, or ttbar, etc ...)

• Final selection: decide if this is a good
interpretation of the event.

• Re-interpretation: go from one
interpretation to another.

C
7

Je
ts

C4
Jet 1

C4
Jet 2

Elec 1 Elec 2

C7 Jet

C
4

Je
ts

El
ec

tr
on

s

C7 Jet W

W

Z

C4
Jet 1

C4
Jet 2

Elec 1 Elec 2

28

Possible Representations

• Add new ParticleView container and
AssociationMap object to EventView...
save results of preselection & overlap
check.

• Tools build PVs at interpretation

• Reinterpretation = get rid of existing PVs

C4 C4

Elec Elec

C7

C4 C4

Elec Elec

C7

Final State Particles

AssociationMap

ParticleViews
C4 C4

Elec Elec

C7 C7

Final State Particles

C4 C4

Elec Elec

C7 C7
Ev

en
tV

ie
w

Ev
en

tV
ie

w

C4

Elec

C7

C4

Elec

C7

C4

Elec

C7

C4

Elec

=Active
• Build PVs during preselection & overlap

check... store in existing FS container.

• Add the ability to mark objects as Active
within FS container... interpretation is
marking objects active.

• Reinterpretation = mark other PVs active

Preferred Solution

29

ILink
• ElementLink is an Athena pointer to an

object inside of a container (inside SG).

• DataLink is an Athena pointer to an
object inside SG.

• Currently in EV:

• the Final State Container is a
ElementLinkVector because AOD
particles are in containers

• the Inferred Object Container is a
vector of DataLinks.

• We would like to point to objects from
EventView and ParticleView without
worrying about where the objects are
stored.

• The original idea for ILink was a base
class for ElementLink and DataLink.

• For ParticleView, Peter Sherwood has
created a wrapper solution.

• Can be generalized beyond IN4M.

«Interface»

INavigable4MomentumLink

toPointer():const Navigable4Momentum*

clone():INavigable4MomentumLink*

~INavigable4MomentumLink()

«Interface»

IParticleViewLink

toPointer():const ParticleView*

clone():IParticleViewLink*

~IParticleViewLink()

ConstParticleViewLink

Split-off UD access - functionality

shared with other views (EV).

Template on View class to access

the parent view. Cannot use through

interface(no virtual templated methods

in C++)

UserDataBlockAccessor<View->ParticleView>

ParticleView::ParticleView

-m_byLabel:std::map<string, set<INavigable4MomentumLink> >

-m_activeInterpreation: INavigible4momentumLink*

-m_activeInterpretationLabels:std::string[1,*]

0..1

parent

UserData access

persitifiable constituent pointer creation

persitifiable parent link creation

Realisations of IParticleViewLink are

hidden in cxx file (removes

compilation dependencies)

T:ParticleView

DataLink

ParticleView

1

1

IParticleViewLinkFactory

+ create(ParticleView*):IParticleLink*
INavigable4MomentumLinkFactory

+ create(DataLink<INavigable4Momentum>):INavigable4MomentumLink*

+ create(INavigable4Momentum*):INavigable4MomentumLink*

+ create(ElementLink<INavigable4MomentumCollection):INavigable4MomentumLink*

UserDataBlock
1

ParticleView

T:INavigable4Momentum

DataLink

INavigable4Momentum

INavigable4MomentumCollection

ElementLink

Realisations of IN4MLink are

hidden in cxx file (removes

compilation dependencies)

DataLinkLink BarePointerLink

1

1

1

1

ElementLinkLink

INavigable4Momentum

Peter Sherwood

30

Status Summary
• Full release-12 functionality of EventView is now

ready for release-13.

• We can make POOL-based DPDs with EV... today’s
tutorial.

• We are working on the UserData persistency. This is
a very challenging problem.

• Lots of iterations on the design and implementation
of ParticleView.

• New UserDataAccessor and ILink interfaces.

31

Today’s Tutorials
• You have a choice:

• EventViewBuilder tutorial: similar to yesterday... more about how
to write/configure tools.

• Eg: Object Matching

• Run configure HighPtView/SUSYView: not really a tutorial, but
easy instructions to follow and immediately produce custom
DPDs.

• Release 13... building POOL-based DPDs with EventView:

• SimpleThinningExample

• HighPtViewDPDThinningTutorial

• Performance Tutorial: MuonView... example of how to build
performance DPD with EventView. (We also have
ElectronPhotonView and JetView).

32

Final Remarks
• We need your support

• The EventView Framework is still a grass-roots project...

• no official support from ATLAS... no one is supposed to working on it.

• no funding!

• Kyle, Akira, and I developed this despite opposition because we believe in common tools.

• EventView was our attempt to build a general analysis framework.

• But this was always meant to be a project for everyone... not something we control.

• To the surprise of some, we have a very large user base...

• But maintenance, support, and development is very taxing... and we need to move on.

• Various people have helped us... but we need ATLAS to take responsibility for the project.

• Important for you to attend the analysis model forum meeting at the end of this month, and
voice your opinion.

• As in everything, there are good and bad things about EventView.

• Lets make EventView a better tool for everyone.

33

Extra Slides

34

Final Remarks
• There is much more to DPD building than just throwing out info from the AOD.

• Currently, other analysis methods in Athena (eg CBNTAA, AnalysisSkeleton, or SUSYPlot):

• in many cases must be hardwired for every step of the analysis.

• provide little structure to allow sharing analyses or standardizing steps.

• are strongly coupled to the DPD format (ie AANT, POOL-based).

• usually provide much less native functionality on their DPDs than EV-made DPDs.

• provide no guarantee that the “UserData” in the DPD (if any) is understandable outside of the
group or can be plugged into another analysis.

• The EventView Framework

• Allows building analyses with as little or as much C++ coding as you like.

• Provide a huge library of common tools which get tested and validated by user community, and
can be easily extend when necessary.

• Already supports several dozen analyses in all but one physics working group. Supports
performance studies too (MuonView, ElectronPhotonView, JetView, ...). And has been running in
production (both centralized and private).

• Will produce “smart” POOL-based DPDs which encapsulate all of the output of analyses in a
common format.

35

Composites
• Composite particles are also a form of UserData.

• With the exception of Top, combinatorics is more an issue for B physics than
typical high-pT analyses.

• But Athena is the natural place for kinematics fits, vertexing, etc...

• And it is impractical to rebuild composites every time you iterate your analysis.

• We need to confirm that CompositeParticle EDM Object is useable in
AthenaROOTAccess.

• EventView also stores pointers to CompositeParticles (inferred objects).

• EventViewCombiners allows users to build any decay chain all from job Options:

• Automatically creates new EventViews if any Composites have any common
daughters.

• Good book-keep mechanism for combinatoric choices.

36

