

# Determining Weak Phases from $B \rightarrow J/\psi P$ Decays

Martin Jung



GEFÖRDERT VOM



FLASY 2012 - Workshop on Flavour Symmetries  
in Dortmund, Germany, 4th of July 2012

# Outline

Introduction

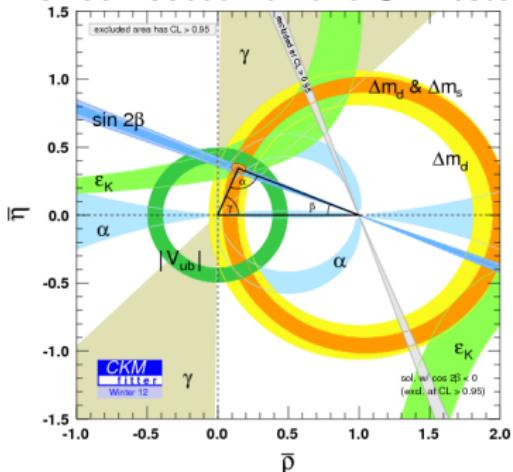
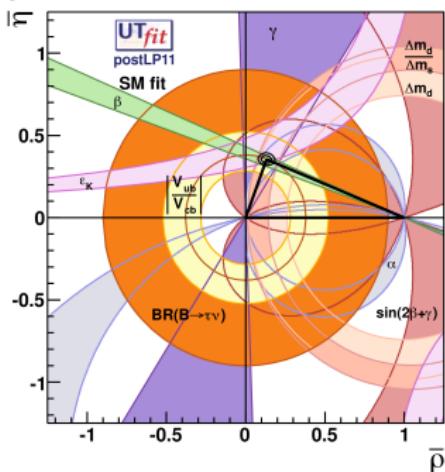
Strategy

Phenomenology

Conclusions and Outlook

# Motivation

Flavour sector of the SM established:



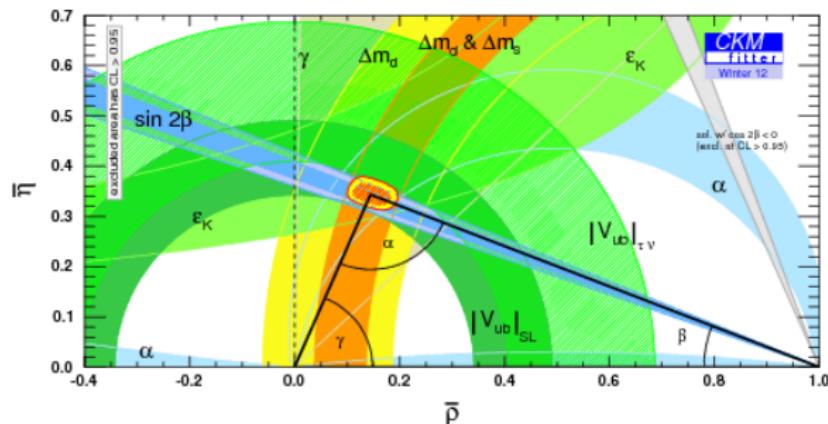
Furthermore  $B_s$  seems now basically SM-like

- ▶ NP influence constrained to be “small”
- ▶ LHC and NGB(s) will reach immense precision

Subleading SM contributions important

## A closer look

Tension(s) in direct vs indirect determination of  $\sin 2\beta$ :



Main issue:  $B \rightarrow \tau \nu$

- $\Delta \sin 2\beta \neq 0 @ 2.8\sigma$
- Tree-level process
- However sensitive to NP

Additionally:

- $|V_{ub}^{B \rightarrow \tau \nu}| \gtrsim |V_{ub}^{sl}| \gtrsim |V_{ub}^{\sin 2\beta}|$
- $|V_{ub}^{sl}|$  inclusive vs exclusive
- $\epsilon_K$  largish (input-dependent)

Increased interest in sources for  $\Delta \sin 2\beta$

## $B \rightarrow J/\psi M$ decays - basics

$B_d \rightarrow J/\psi K, B_s \rightarrow J/\psi \phi$ :

- Amplitude  $A = \lambda_{cs} A_c + \lambda_{us} A_u$
- Completely dominated by  $A_c$  [Bigi/Sanda '81]
- Very clear experimental signature
- Subleading terms:
  - Doubly Cabibbo suppressed
  - Penguin suppressed

➡ Estimates  $|\lambda_{us} A_u| / |\lambda_{cs} A_c| \lesssim 10^{-3}$   
[Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]



The golden modes of  $B$  physics:  $S = \sin \phi$

However:

- Quantitative calculation still unfeasible
- Fantastic precision expected at LHC and SFFs
- Indications of  $\Delta \sin \phi \neq 0$

➡ Subleading contributions should be controlled

# Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u \neq 0 \Rightarrow S \neq \sin \phi, A_{\text{CP}}^{\text{dir}} \neq 0$$

Idea:  $U$ -spin-related modes constrain  $A_u$

[Fleischer'99, Ciuchini et al.'05, '11,

Faller/Fleischer/MJ/Mannel'09, ...]

Possible NP in mixing:  $\phi = \phi^{\text{SM}} + \phi^{\text{NP}}$



Advantages:

- Data-driven method, avoids calculating matrix elements
- Penguin influence in  $b \rightarrow d$  modes much larger,  $|\lambda_{ud}| \sim |\lambda_{cd}|$
- Allows to extract  $\Delta\phi_{\text{pen}}$ , yields more reliable  $\Delta\phi_{\text{NP}}$

Problems:

- $BR(b \rightarrow d) \sim \lambda^2 BR(b \rightarrow s)$
- $SU(3)$  breaking affects the analysis
- Relatively large range of  $\Delta\phi_{\text{pen}}$  remains allowed

## Refining the analysis

Some of these problems can be addressed: [MJ'12, arXiv: 1206.2050]

- Cabibbo-suppressed modes well accessible at LHC/SFFs
- Perform  $SU(3)$  analysis of  $B \rightarrow J/\psi P$  [Zeppenfeld'81]
  - ➡ Inclusion of 5 accessible modes ( $B_{u,d,s} \rightarrow J/\psi(\pi, K)$ )
- Treat  $SU(3)$  breaking model-independently
  - [Subsets considered in Gronau et al.'95, MJ/Mannel '09]

Assumptions used:

- $SU(3)$  breaking only for the leading amplitude
- MEs of EW penguins with  $\Delta I = 1, 3/2$  neglected in  $A_c$   
(yields tiny corrections to observables!)
- $A_u(B \rightarrow J/\psi \pi^0) - A_u(B \rightarrow J/\psi K^0) = 0$   
(checkable within the analysis)

Data include recent updates from Belle, LHCb, and CDF

Improved extraction of  $\phi_d \rightarrow \phi_d^{\text{NP}}, \Delta\phi_d^{\text{pen}}$

## Resulting framework

This analysis allows in principle to:

- extract the  $B_d$  mixing-phase  $\phi_d$ ,
- extract the shift  $\Delta\phi_{\text{pen}}$ , and
- model-independently analyze  $SU(3)$  breaking in  $B \rightarrow J/\psi P$ ,

using available data, improvable with LHCb and SFFs.

Less restrictive assumptions than in previous analyses

ATTENTION:  
ADVERTISEMENT

## Resulting framework

This analysis allows in principle to:

- extract the  $B_d$  mixing-phase  $\phi_d$ ,
- extract the shift  $\Delta\phi_{\text{pen}}$ , and
- model-independently analyze  $SU(3)$  breaking in  $B \rightarrow J/\psi P$ ,

*ATTENTION:  
ADVERTISEMENT*

using available data, improvable with LHCb and SFFs.

Less restrictive assumptions than in previous analyses

In addition, it provides:

- sensitivity to NP in mixing,
- some sensitivity to NP in the decay amplitudes,
- **some sensitivity to the CKM angle  $\gamma(?)$**

[Fleischer '99, Fleischer et al. '10]

## Resulting framework

This analysis allows in principle to:

- extract the  $B_d$  mixing-phase  $\phi_d$ ,
- extract the shift  $\Delta\phi_{\text{pen}}$ , and
- model-independently analyze  $SU(3)$  breaking in  $B \rightarrow J/\psi P$ ,

*ATTENTION:  
ADVERTISEMENT*

using available data, improvable with LHCb and SFFs.

Less restrictive assumptions than in previous analyses

In addition, it provides:

- sensitivity to NP in mixing,
- some sensitivity to NP in the decay amplitudes.

## Parametrization

$$\begin{aligned}
 A(\bar{B}^0 \rightarrow J/\psi \bar{K}^0) &= \mathcal{N} [1 + 2R_{\epsilon 1} + \bar{\lambda}^2 e^{-i\gamma} (R_{u1} + 3R_{u2})] \\
 \sqrt{2}A(\bar{B}^0 \rightarrow J/\psi \pi^0) &= -\bar{\lambda} \mathcal{N} [1 - R_{\epsilon 1} - R_{\epsilon 2} - e^{-i\gamma} (R_{u1} + 3R_{u2})] \\
 A(B^- \rightarrow J/\psi K^-) &= \mathcal{N} [1 + 2R_{\epsilon 1} + \bar{\lambda}^2 e^{-i\gamma} (R_{u1} - 5R_{u2})] \\
 A(B^- \rightarrow J/\psi \pi^-) &= -\bar{\lambda} \mathcal{N} [1 - R_{\epsilon 1} - R_{\epsilon 2} - e^{-i\gamma} (R_{u1} - 5R_{u2})] \\
 A(\bar{B}_s \rightarrow J/\psi K^0) &= -\bar{\lambda} \mathcal{N} [1 - R_{\epsilon 1} + R_{\epsilon 2} - e^{-i\gamma} (R_{u1} + 3R_{u2})]
 \end{aligned}$$

- $\mathcal{N}$ : Leading amplitude
- $R_{u1,2}$ :  $\sim P/T$ , includes  $\sqrt{\bar{\rho}^2 + \bar{\eta}^2}$  and numerical factors
- $R_{\epsilon 1,2}$ : SU(3)-breaking ME combinations, normalized to  $\mathcal{N}$
- $\bar{\lambda} = \lambda(1 + \lambda^2/2)$  for brevity

Expected orders of magnitude:

$|R_{u1}|, |R_{\epsilon 1,2}| \lesssim 10 - 15\%$ ,  $|R_{u2}| \lesssim 1.7\%$ ,  
 corresponding to SU(3) breaking  $\lesssim 40\%$ ,  $P/T \lesssim 50\%$

# Observables

- Define power counting to identify leading contributions:  
 $\bar{\lambda}, |R_{u1,\epsilon 1,2}| \sim \xi \sim 0.1 \dots 0.2, |R_{u2}| \sim \xi^2$
- Find combinations sensitive to single parameters at “LO”
- Direct CP asymmetries  $A_{\text{CP}}^{\text{dir}} \sim \text{Im}(R_{u1,2})$
- $\Delta S \equiv \eta_f S + \sin \phi \sim \text{Re}(R_{u1})$
- Important rate combination:

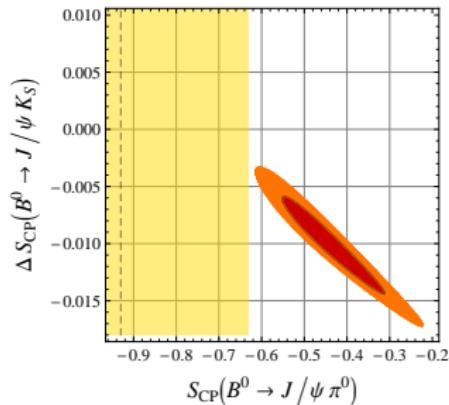
$$\begin{aligned}
 R_{\Sigma} &\equiv \frac{1}{\bar{\lambda}^2} \left( \frac{\bar{\Gamma}(B^- \rightarrow J/\psi \pi^-)}{\bar{\Gamma}(B^- \rightarrow J/\psi K^-)} + \frac{\bar{\Gamma}(B_s \rightarrow J/\psi \bar{K}^0)}{\bar{\Gamma}(B^0 \rightarrow J/\psi K^0)} \right) - 2 \\
 &= -4(3\text{Re}(R_{\epsilon 1}) + \cos \gamma \text{Re}(R_{u1}))
 \end{aligned}$$

## Results with present data – $SU(3)$ limit

Two datasets:  $R_{\pi K} = \frac{BR(B^- \rightarrow J/\psi \pi^-)}{BR(B^- \rightarrow J/\psi K^-)} = \begin{cases} (4.9 \pm 0.4)\% \text{ (WA)} \\ (3.8 \pm 0.1)\% \text{ (LHCb)} \end{cases}$

Including *only* penguins:

- Yields bad fit,  $\chi^2_{\text{min}}/\text{d.o.f.} \gtrsim 5$
- $S(B \rightarrow J/\psi \pi^0)_{\text{fit}} < \text{exp.}$
- No help from neglected amplitude
- Correction  $\Delta S$  negative  
➡ Result worsens CKM fit
- Driving force:  
 $R_{\Sigma} \stackrel{\text{exp.}}{=} -0.32 \pm 0.14 (-0.52 \pm 0.12)$

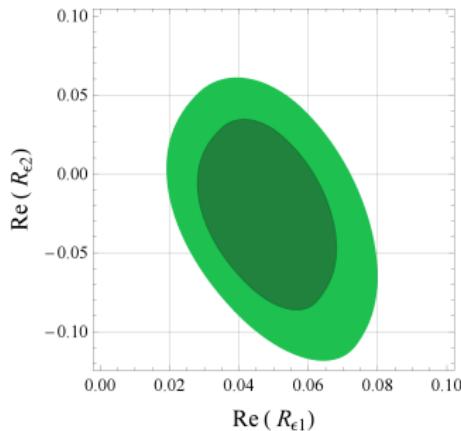


Necessity to go beyond  $SU(3)$  limit  
 “Factorizable breaking” does not help

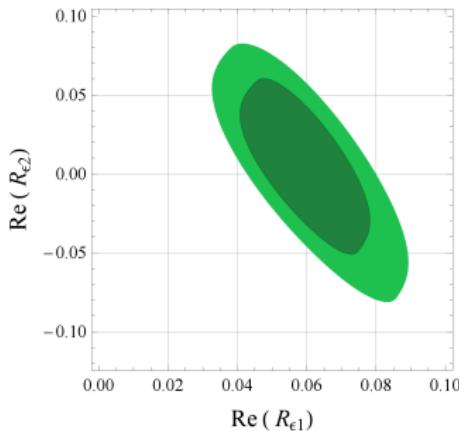
# Results with present data – vanishing penguins

Setting  $R_{ui} \equiv 0$  works rather well:

$R_{\pi K}$  from WA



$R_{\pi K}$  from LHCb

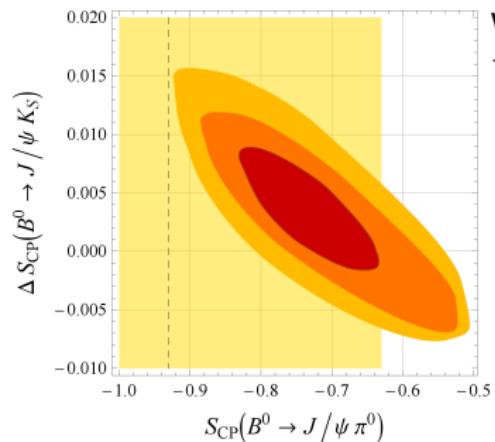


- Order of  $\text{Re}(R_{\epsilon i})$  as expected,  $\sim 20\%$   $SU(3)$  breaking
- $\text{Im}(R_{\epsilon i})$  not constrained
- $\chi^2 = 9.4(6.0)$  for 7 *effective degrees of freedom*
- ➡  $SU(3)$  breaking main ingredient to understand data

# Results with present data – full fit I

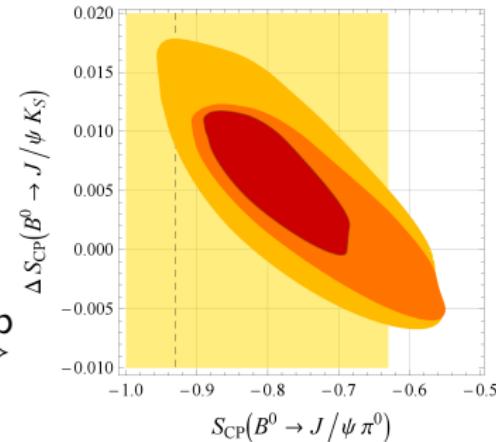
Inclusion of penguins:

- Fits data well,  $R_{\pi K}^{\text{LHCb}}$  preferred
- Remaining tension due to  $\Gamma(B^0 \rightarrow J/\psi K^0) - \Gamma(B^- \rightarrow J/\psi K^-)$
- Predicts  $|S(B \rightarrow J/\psi \pi)|$  smaller than present central value
- $|\Delta S| \lesssim 0.01$  for  $r_{SU(3)} \leq 40\%$  and  $r_{\text{pen}} \leq 50\%$



WA  
↔

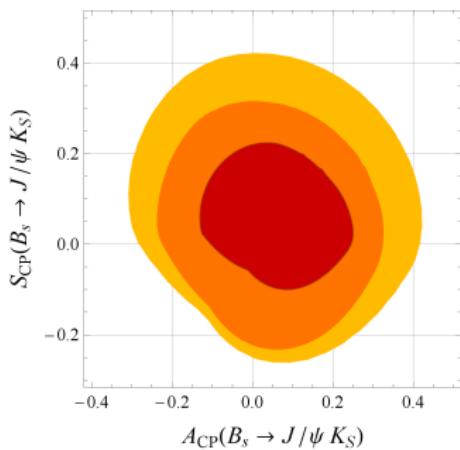
LHCb  
↔



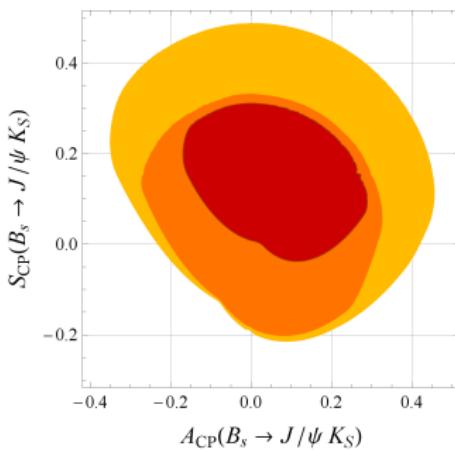
## Results with present data – full fit II

Predictions for CP asymmetries in  $B_s \rightarrow J/\psi K_S$ :

$R_{\pi K}$  from WA



$R_{\pi K}$  from LHCb



- Present bound:  $|A_{CP}|, |S_{CP}| \lesssim 20\%$ 
  - ➡ Measurement will add important information
  - ➡ Remaining theory input reduced!

# Projections for data to come

With future data (scenarios 1-3):

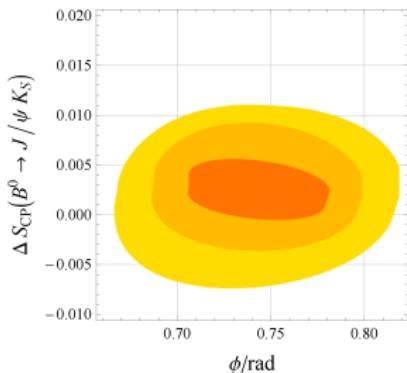
- Remaining theory input reduced
- $\delta\phi_d$  follows  $\delta S_{\text{exp}}(B \rightarrow J/\psi K_S)$

Error due to  $\Delta\phi_{\text{pen}}$  reducible!

What about  $B \rightarrow J/\psi V$ ?

- In principle method transferable
- Technical complications:
  - 3 amplitudes/decay
  - $\phi$  has singlet component
- Experimentally more involved:  
final states  $f = J/\psi \{\phi, K^*, \rho, \omega\}$

Work in progress



|      |                                                           |
|------|-----------------------------------------------------------|
| Sc.1 | $5 \text{ fb}^{-1}$ LHCb                                  |
| Sc.2 | $+5 \text{ ab}^{-1}$ SFF                                  |
| Sc.3 | $50 \text{ ab}^{-1}$ SFF +<br>$100 \text{ fb}^{-1}$ SLHCb |

## Conclusions and outlook

- $B \rightarrow J/\psi M$  decays remain most important source for  $\phi_{d,s}$
- Controlling penguins is necessary for very high precision
- $SU(3)$ -breaking corrections are important
- Presented method allows for inclusion with present data
- $\Delta S \lesssim 0.01$  for conservative assumptions
- Results will improve with LHCb/SFF data, penguins tamed
- $B \rightarrow J/\psi V$  more complicated, work in progress



# What about $J/\psi V$ modes?

- In principle, the approach is transferable to  $B_s \rightarrow J/\psi V$
- Angular distribution measurements necessary
  - ↗ separate  $SU(3)$  amplitudes  $\rightarrow$  three analyses
- Corresponding  $SU(3)$  partners are  $B_{u,d,s} \rightarrow J/\psi \{\phi, K^*, \rho, \omega\}$
- Subsets may be useful to keep number of parameters finite...
- Experimentally challenging modes
  - ↗ Talk to me about the prospects
- Other modes sensitive to these contributions:
  - Can be used for qualitative statements
  - Quantitative analysis extremely difficult

$$B \rightarrow J/\psi K$$

SM and NP contributions and suppression factors:

| Contr.                          | Suppression factors |           |             |           |             | Comment                                                                        |
|---------------------------------|---------------------|-----------|-------------|-----------|-------------|--------------------------------------------------------------------------------|
|                                 | Op.                 | Dyn.      | CKM         | NP        | $\Pi$       |                                                                                |
| $\lambda_c^s T$                 | 1                   | 1         | 1           | -         | <b>1</b>    |                                                                                |
| $\lambda_c^s P \bar{c} c$       | $\lambda$           | 1         | 1           | -         | $\lambda$   | $\mathcal{O}(1) \rightarrow \lambda_c^s A_c^0$                                 |
| $\lambda_c^s P \bar{q} q_{I=0}$ | $\lambda$           | $\lambda$ | 1           | -         | $\lambda^2$ |                                                                                |
| $\lambda_c^s P \bar{q} q_{I=1}$ | $\lambda^2$         | $\lambda$ | 1           | -         | $\lambda^3$ | $\leq \mathcal{O}(\lambda^3) \times \lambda_c^s A_c^0$<br>→ "gold-plated mode" |
| $\lambda_u^s T$                 | 1                   | $\lambda$ | $\lambda^2$ | -         | $\lambda^3$ |                                                                                |
| $\lambda_u^s P \bar{c} c$       | $\lambda$           | 1         | $\lambda^2$ | -         | $\lambda^3$ |                                                                                |
| $\lambda_u^s P \bar{q} q_{I=0}$ | $\lambda$           | $\lambda$ | $\lambda^2$ | -         | $\lambda^4$ |                                                                                |
| $\lambda_u^s P \bar{q} q_{I=1}$ | $\lambda^2$         | $\lambda$ | $\lambda^2$ | -         | $\lambda^5$ |                                                                                |
| $P \bar{c} c_{0/c}$             | 1                   | 1         | 1           | $\lambda$ | $\lambda$   | $\mathcal{O}(\lambda) \times \lambda_c^s A_c^0$                                |
| $P \bar{q} q_{0/c, I=0}$        | 1                   | $\lambda$ | 1           | $\lambda$ | $\lambda^2$ |                                                                                |
| $P \bar{q} q_{c, I=1}$          | 1                   | $\lambda$ | 1           | $\lambda$ | $\lambda^2$ | $\mathcal{O}(\lambda^2) \times \lambda_c^s A_c^0$                              |

# Experimental data

| Decay                                    | $BR/10^{-4}$      | $A_{CP}/\%$   | $S_{CP}$          |
|------------------------------------------|-------------------|---------------|-------------------|
| $\bar{B}^0 \rightarrow J/\psi \bar{K}^0$ | $8.71 \pm 0.32$   | $1.0 \pm 1.2$ | $0.673 \pm 0.016$ |
| $\bar{B}^0 \rightarrow J/\psi \pi^0$     | $0.176 \pm 0.016$ | $10 \pm 13$   | $-0.93 \pm 0.29$  |
| $B^- \rightarrow J/\psi K^-$             | $10.13 \pm 0.34$  | $0.1 \pm 0.7$ | —                 |
| $B^- \rightarrow J/\psi \pi^-$           | $0.50 \pm 0.04$   | $1 \pm 7$     | —                 |
| set 2 (LHCb)                             | $0.39 \pm 0.02$   | $0.5 \pm 2.9$ | —                 |
| $\bar{B}^s \rightarrow J/\psi K^0$       | $0.34 \pm 0.05$   |               |                   |

# Power counting explicitly

| Observable                                                       | LO expression                                                                     | Experiment         |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------|
| $A_I^K$                                                          | $8\bar{\lambda}^2 \cos \gamma \operatorname{Re}(R_{u2})$                          | $-0.037 \pm 0.025$ |
| $A_I^\pi$                                                        | $-8 \cos \gamma \operatorname{Re}(R_{u2})$                                        | $-0.13 \pm 0.06$   |
|                                                                  |                                                                                   | $-0.01 \pm 0.05$   |
| $\Delta A_{\text{CP}}^K$                                         | $16\bar{\lambda}^2 \sin \gamma \operatorname{Im}(R_{u2})$                         | $0.009 \pm 0.014$  |
| $\sum A_{\text{CP}}^K$                                           | $4\bar{\lambda}^2 \sin \gamma \operatorname{Im}(R_{u1})$                          | $0.011 \pm 0.015$  |
| $\Delta A_{\text{CP}}^\pi$                                       | $-16 \sin \gamma \operatorname{Im}(R_{u2})$                                       | $0.09 \pm 0.15$    |
|                                                                  |                                                                                   | $0.10 \pm 0.13$    |
| $\sum A_{\text{CP}}^\pi$                                         | $-4 \sin \gamma \operatorname{Im}(R_{u1})$                                        | $0.11 \pm 0.15$    |
|                                                                  |                                                                                   | $0.11 \pm 0.13$    |
| $\Delta S(B \rightarrow J/\psi K)$                               | $-2\bar{\lambda}^2 \sin \gamma \cos(\phi) \operatorname{Re}(R_{u1})$              | —                  |
| $\Delta S(B \rightarrow J/\psi \pi)$                             | $2 \sin \gamma \cos(\phi) \operatorname{Re}(R_{u1})$                              | —                  |
| $\frac{\tilde{R}_{\pi K} - \tilde{R}_{KK}}{\bar{\lambda}^2}$     | $-4 \operatorname{Re}(R_{\epsilon 2})$                                            | $0.17 \pm 0.13$    |
|                                                                  |                                                                                   | $-0.03 \pm 0.11$   |
| $\frac{\tilde{R}_{\pi K} + \tilde{R}_{KK}}{\bar{\lambda}^2} - 2$ | $-4(3 \operatorname{Re}(R_{\epsilon 1}) + \cos \gamma \operatorname{Re}(R_{u1}))$ | $-0.32 \pm 0.14$   |
|                                                                  |                                                                                   | $-0.52 \pm 0.12$   |

# Structure of fit in the SU(3) limit

The following observations determine the fit:

- Direct CP asymmetries restrict  $\text{Im}(R_{u1,2})$  as expected
- $A_I^K \neq 0 @ 1.5\sigma$  only, but c.v. huge compared to expectation  
↳  $\text{Re}(R_{u2})$  larger than expected
- $A_I^\pi$  ok (for LHCb result) / with “wrong” sign (former WA)  
Both cases: does not fit to  $A_I^K$  (worsens  $\chi^2$ )
- Rate combination  $R_\Sigma$ : yields large  $\text{Re}(R_{u1})$   
↳  $\Delta S$  larger than expected