Flavour physics from an approximate $U(2)^3$ symmetry

Filippo Sala

Scuola Normale Superiore and INFN, Pisa

FLASY12, Dortmund, July 4

based on: Barbieri,Isidori,Jones-Perez,Lodone,Straub arXiv:1105.2296 Barbieri,Campli,Isidori,S,Straub arXiv:1108.5125 Barbieri,Buttazzo,S,Straub arXiv:1203.4218 and 1206.1327

Filippo Sala, SNS & INFN Pisa Flavour physics from an approximate $U(2)^3$ symmetry 1/17

Why is CKM so good?

Flavour: excellent agreement between data and CKM picture

In other words:
$$\Delta \mathcal{L} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \quad \Rightarrow \quad \Lambda_{i} \gtrsim 10^{3} \div 10^{4} \text{ TeV}$$

Why is CKM so good?

Flavour: excellent agreement between data and CKM picture

In other words:
$$\Delta \mathcal{L} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \implies \Lambda_{i} \gtrsim 10^{3} \div 10^{4} \,\mathrm{TeV}$$

Possible way out: $\Delta \mathcal{L} = \sum_{i} \xi_{i} \frac{c_{i}}{\Lambda_{i}^{2}} \mathcal{O}_{i}$

with $c_i \sim O(1)$ and ξ_i small due to some **flavour symmetry**

Why is CKM so good?

Flavour: excellent agreement between data and CKM picture

In other words:
$$\Delta \mathcal{L} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \implies \Lambda_{i} \gtrsim 10^{3} \div 10^{4} \,\mathrm{TeV}$$

Possible way out: $\Delta \mathcal{L} = \sum_{i} \xi_{i} \frac{c_{i}}{\Lambda_{i}^{2}} \mathcal{O}_{i}$

with $c_i \sim O(1)$ and ξ_i small due to some **flavour symmetry**

Minimal Flavour Violation paradigm

[D'Ambrosio, Giudice, Isidori, Strumia 2002]

$$U(3)^3 = U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$$

 $Y_u \sim (3, \bar{3}, 1), Y_d \sim (3, 1, \bar{3})$ so that SM is formally invariant

Assumption: BSM also formally invariant, only with Y_u, Y_d

 $\checkmark \xi \sim V_{CKM}^{2\div 4} \Rightarrow \Lambda \sim \text{a few TeV}$ is OK with flavour bounds

Beyond MFV: a way to proceed

Why to go beyond MFV?

× $U(3)^3$ is not in the quark spectrum × EDMs, ...

Beyond MFV: a way to proceed

Why to go beyond MFV?

×
$$U(3)^3$$
 is not in the quark spectrum
× FDMs

Reduce symmetry, round 1

From $U(3)^3$ to U(2) [Pomarol, Tommasini 1995 and Barbieri, Dvali, Hall 1995]

- ✓ Exhibited by quark spectrum
- × Too large flavour-violating effects in the RH sector [Barbieri,Hall,Romanino 1997]

Why to go beyond MFV?

×
$$U(3)^3$$
 is not in the quark spectrum × FDMs

Reduce symmetry, round 1

From $U(3)^3$ to U(2) [Pomarol, Tommasini 1995 and Barbieri, Dvali, Hall 1995]

- ✓ Exhibited by quark spectrum
- × Too large flavour-violating effects in the RH sector

[Barbieri,Hall,Romanino 1997]

Reduce symmetry, round 2	
$U(2)^3 = U(2)_{Q_L}$	\times $U(2)_{U_R}$ \times $U(2)_{D_R}$
$\left(egin{array}{c} q_L^1 \ q_L^2 \end{array} ight)$	$\left(\begin{array}{c} u_R \\ c_R \end{array}\right) \qquad \left(\begin{array}{c} d_R \\ s_R \end{array}\right)$
q_L^3	t _R b _R
Eilinno Sala, SNS & INEN Pisa	Elayour physics from an approximate $II(2)^3$ symmetry

Exact
$$U(2)^3 \longrightarrow m_u = m_d = m_s = m_c = 0, V_{CKM} = 1$$

$$Y_u = y_t \left(\frac{0 \mid 0}{0 \mid 1} \right) \qquad Y_d = y_b \left(\frac{0 \mid 0}{0 \mid 1} \right)$$

Exact
$$U(2)^3 \longrightarrow m_u = m_d = m_s = m_c = 0, \ V_{CKM} = 1$$

$$Y_u = y_t \left(\begin{array}{c|c} \Delta Y_u & 0 \\ \hline 0 & 1 \end{array} \right) \qquad Y_d = y_b \left(\begin{array}{c|c} \Delta Y_d & 0 \\ \hline 0 & 1 \end{array} \right)$$

• $\Delta Y_u \sim (2, \bar{2}, 1), \ \Delta Y_d \sim (2, 1, \bar{2})$ to explain quark masses

Exact
$$U(2)^3 \longrightarrow m_u = m_d = m_s = m_c = 0, V_{CKM} = 1$$

$$Y_{u} = y_{t} \left(\frac{\Delta Y_{u} \mid x_{t} V}{0 \mid 1} \right) \qquad Y_{d} = y_{b} \left(\frac{\Delta Y_{d} \mid x_{b} V}{0 \mid 1} \right)$$

- $\Delta Y_u \sim (2, \overline{2}, 1), \ \Delta Y_d \sim (2, 1, \overline{2})$ to explain quark masses
- Minimal $U(2)^3$: only 1 doublet $V \sim (2, 1, 1)$ to explain CKM

$$V_{\mathsf{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & s_L^u s e^{-i\delta} \\ -\lambda & 1 - \lambda^2/2 & c_L^u s \\ -s_L^d s \, e^{i\beta} & -sc_L^d & 1 \end{pmatrix}, \quad (\bar{u}_L \gamma_\mu V_{\mathsf{CKM}} d_L) \, W_\mu$$

All Minimal $U(2)^3$ 4 physical parameters from tree level observables

Exact
$$U(2)^3 \longrightarrow m_u = m_d = m_s = m_c = 0, V_{CKM} = 1$$

$$Y_{u} = y_{t} \left(\frac{\Delta Y_{u}}{x_{u} V_{u}^{\dagger}} \middle| \frac{x_{t} V}{1} \right) \qquad Y_{d} = y_{b} \left(\frac{\Delta Y_{d}}{x_{d} V_{d}^{\dagger}} \middle| \frac{x_{b} V}{1} \right)$$

- $\Delta Y_u \sim (2, \bar{2}, 1), \ \Delta Y_d \sim (2, 1, \bar{2})$ to explain quark masses
- Minimal $U(2)^3$: only 1 doublet $V \sim (2,1,1)$ to explain CKM
- Generic $U(2)^3$: 2 extra doublets $V_u \sim (1,2,1)$, $V_d \sim (1,1,2)$

$$V_{\mathsf{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & s_L^u \mathbf{s} e^{-i\delta} \\ -\lambda & 1 - \lambda^2/2 & c_L^u \mathbf{s} \\ -s_L^d \mathbf{s} \, e^{i\beta} & -\mathbf{s} c_L^d & 1 \end{pmatrix}, \quad (\bar{u}_L \gamma_\mu V_{\mathsf{CKM}} d_L) \, W_\mu$$

All Minimal $U(2)^3$ 4 physical parameters from tree level observables

Assume: all FV controlled by the spurions, i.e. $\Delta \mathcal{L}$ built with the bilinears: $\mathbf{\bar{q}}_{L} V V^{\dagger} \mathbf{q}_{L}, \quad \mathbf{\bar{q}}_{L} V q_{3L}, \quad \mathbf{\bar{q}}_{L} V t_{R}, \quad \lambda_{b} \mathbf{\bar{q}}_{L} V b_{R}, \quad \mathbf{\bar{q}}_{L} \Delta Y_{u} \mathbf{u}_{R}, \quad \lambda_{b} \mathbf{\bar{q}}_{L} \Delta Y_{d} \mathbf{d}_{R}$ $\Rightarrow \quad \Delta \mathcal{L} = \Delta \mathcal{L}_{L}^{4f} + \Delta \mathcal{L}_{mag}$

Assume: all FV controlled by the spurions, i.e. $\Delta \mathcal{L}$ built with the bilinears: $\mathbf{\bar{q}}_{L} V V^{\dagger} \mathbf{q}_{L}, \quad \mathbf{\bar{q}}_{L} V q_{3L}, \quad \mathbf{\bar{q}}_{L} V t_{R}, \quad \lambda_{b} \mathbf{\bar{q}}_{L} V b_{R}, \quad \mathbf{\bar{q}}_{L} \Delta Y_{u} \mathbf{u}_{R}, \quad \lambda_{b} \mathbf{\bar{q}}_{L} \Delta Y_{d} \mathbf{d}_{R}$ $\Rightarrow \quad \Delta \mathcal{L} = \Delta \mathcal{L}_{L}^{4f} + \Delta \mathcal{L}_{mag}$

FV controlled by **V**_{CKM} (like $U(3)^3$) (but $c_L^B = c_L^K$ and $\phi_B = 0$ in $U(3)^3$)

Selected operators and relevant observables $(1/\Lambda^2 \text{ understood})$

$$\begin{split} \Delta \mathcal{L}_{L}^{4f} \supset c_{L}^{B} e^{i\phi_{B}} (\mathbf{V_{tb}} \mathbf{V_{ti}^{*}})^{2} (\bar{d}_{L}^{i} \gamma_{\mu} b_{L})^{2}, \quad i = d, s \qquad \qquad B_{d,s}^{0} - \bar{B}_{d,s}^{0} \\ c_{L}^{K} (\mathbf{V_{ts}} \mathbf{V_{td}^{*}})^{2} (\bar{d}_{L} \gamma_{\mu} s_{L})^{2}, \qquad \qquad \epsilon_{K} \\ \Delta \mathcal{L}_{mag} \supset c_{7\gamma} e^{i\phi_{7\gamma}} m_{b} \mathbf{V_{tb}} (\bar{d}_{L}^{i} \sigma_{\mu\nu} b_{R}) eF_{\mu\nu} \qquad \qquad b \to s(d) \gamma \end{split}$$

Assume: all FV controlled by the spurions, i.e. $\Delta \mathcal{L}$ built with the bilinears: $\mathbf{\bar{u}}_{\mathsf{R}} \mathbf{V}_{u} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad \mathbf{\bar{u}}_{\mathsf{R}} \mathbf{V}_{u} t_{\mathsf{R}}, \quad \mathbf{\bar{q}}_{3L} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad \mathbf{\bar{q}}_{\mathsf{L}} \mathbf{V} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad (u \leftrightarrow d)$

$$\Rightarrow \ \Delta \mathcal{L} = \Delta \mathcal{L}_L^{4f} + \Delta \mathcal{L}_{mag} + \Delta \mathcal{L}_R^{4f} + \Delta \mathcal{L}_{LR}^{4f}$$
 FV both in L and R currents

FV controlled by **V**_{CKM} (like $U(3)^3$) (but $c_L^B = c_L^K$ and $\phi_B = 0$ in $U(3)^3$)

Selected operators and relevant observables $(1/\Lambda^2 \text{ understood})$

$$\begin{split} \Delta \mathcal{L}_{L}^{4f} \supset c_{L}^{B} e^{i\phi_{B}} (\mathbf{V_{tb}} \mathbf{V_{ti}^{*}})^{2} (\bar{d}_{L}^{i} \gamma_{\mu} b_{L})^{2}, \quad i = d, s \qquad \qquad B_{d,s}^{0} - \bar{B}_{d,s}^{0} \\ c_{L}^{K} (\mathbf{V_{ts}} \mathbf{V_{td}^{*}})^{2} (\bar{d}_{L} \gamma_{\mu} s_{L})^{2}, \qquad \qquad \epsilon_{K} \\ \Delta \mathcal{L}_{mag} \supset c_{7\gamma} e^{i\phi_{7\gamma}} m_{b} \mathbf{V_{tb}} \mathbf{V_{ti}^{*}} (\bar{d}_{L}^{i} \sigma_{\mu\nu} b_{R}) eF_{\mu\nu} \qquad \qquad b \to s(d) \gamma \end{split}$$

Assume: all FV controlled by the spurions, i.e. $\Delta \mathcal{L}$ built with the bilinears: $\mathbf{\bar{u}}_{\mathsf{R}} \mathbf{V}_{u} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad \mathbf{\bar{u}}_{\mathsf{R}} \mathbf{V}_{u} t_{\mathsf{R}}, \quad \mathbf{\bar{q}}_{3L} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad \mathbf{\bar{q}}_{\mathsf{L}} \mathbf{V} \mathbf{V}_{u}^{\dagger} \mathbf{u}_{\mathsf{R}}, \quad (u \leftrightarrow d)$

$$\Rightarrow \ \Delta \mathcal{L} = \Delta \mathcal{L}_L^{4f} + \Delta \mathcal{L}_{mag} + \Delta \mathcal{L}_R^{4f} + \Delta \mathcal{L}_{LR}^{4f}$$
 FV both in L and R currents

FV controlled by **V**_{CKM} (like $U(3)^3$) (but $c_L^B = c_L^K$ and $\phi_B = 0$ in $U(3)^3$)

Selected operators and relevant observables $(1/\Lambda^2 \text{ understood})$

$$\begin{split} \Delta \mathcal{L}_{L}^{4f} \supset c_{L}^{B} e^{i\phi_{B}} (\mathbf{V_{tb}}\mathbf{V_{ti}^{*}})^{2} (\bar{d}_{L}^{i}\gamma_{\mu}b_{L})^{2}, \quad i = d, s \qquad \qquad B_{d,s}^{0} - \bar{B}_{d,s}^{0} \\ c_{L}^{K} (\mathbf{V_{ts}}\mathbf{V_{td}^{*}})^{2} (\bar{d}_{L}\gamma_{\mu}s_{L})^{2}, \qquad \qquad \epsilon_{K} \end{split}$$

$$\Delta \mathcal{L}_{\rm mag} \supset c_{7\gamma} e^{i\phi_{7\gamma}} m_b \mathbf{V}_{\rm tb} \mathbf{V}_{\rm ti}^* (\bar{d}_L^j \sigma_{\mu\nu} b_R) eF_{\mu\nu}, \qquad \qquad b \to s(d) \gamma$$

$$c_D e^{i\phi_D} m_t \frac{\epsilon_R^a}{\epsilon_L} \mathbf{V}_{ub} \mathbf{V}_{cb}^* \left(\bar{\boldsymbol{u}}_L \sigma_{\mu\nu} T^a c_R \right) g_s G_{\mu\nu}^a \qquad \Delta A_{CP}^D$$

$$\Delta \mathcal{L}_{LR}^{4f} \supset c_R^{\kappa} e^{i\phi_R^{\kappa}} \frac{s_R^d}{s_L^d} \left(\frac{\epsilon_R^d}{\epsilon_L^d} \right)^2 (\mathbf{V}_{\mathsf{ts}} \mathbf{V}_{\mathsf{td}}^*)^2 (\bar{d}_L \gamma_\mu s_L) (\bar{d}_R \gamma_\mu s_R) \qquad \epsilon_K$$

Minimal $U(2)^3$: bounds and new effects

 $\Delta F = 2$ Can solve CKM fit tensions! 0.5 1.0 $U(2)^{3}$ $c_{LL}^{B} = 0$ 2.00.8 $c_{\rm LL}^K \times (3 \text{ TeV}/\Lambda)^2$ 0.4 $U(2)^{3}$ 0.6 1.5 ϕ_B/π 0.3 0.4 1.0 0.2 0.2 0.00.5 0.1 -0.20.0 $-0.4 - 0.2 \ 0.0 \ 0.2 \ 0.4$ -0.4 - 0.20.0 0.2 0.4 -0.50.0 0.5 1.0 $c_{II}^B \times (3 \text{ TeV}/\Lambda)^2$ $c_{II}^{K} \times (3 \text{ TeV} / \Lambda)^{2}$ $c_{II}^B \times (3 \text{ TeV}/\Lambda)^2$ Messages • Data consistent with $\Delta \mathcal{L} = \sum_i \xi_i \frac{c_i}{\Lambda^2} \mathcal{O}_i$ and $|c_i| = 0.2 \div 1$ • Larger effects than $U(3)^3$ allowed see also [Buras, Girrbach 2012]

 $\Lambda_i \simeq 4\pi v \simeq 3 \,\mathrm{TeV}$ (compos. scale/new weakly int. particles of mass $\sim v$)

Minimal $U(2)^3$: bounds and new effects

Messages

- Data consistent with $\Delta \mathcal{L} = \sum_i \xi_i \frac{c_i}{\Lambda_i^2} \mathcal{O}_i$ and $|c_i| = 0.2 \div 1$
- Larger effects than $U(3)^3$ allowed see also [Buras, Girrbach 2012]

 $\Lambda_i \simeq 4\pi \nu \simeq 3 \,\mathrm{TeV}$ (compos. scale/new weakly int. particles of mass $\sim \nu$)

Generic $U(2)^3$: bounds and new effects

$$\Delta Y_{u,d} = L(s_L^{u,d}) \cdot \Delta Y_{u,d}^{\text{diag}} \cdot R(s_R^{u,d}), \quad V = (0, \epsilon_L), \quad V_{u,d} = (0, \epsilon_R^{u,d})$$

 $s_L^{u,d}$, ϵ_L fixed from tree level observables, $s_R^{u,d}$, $\epsilon_R^{u,d}$ bounded from above

Up sector within $U(2)^3$

Minimal $U(2)^3$: prediction of no detectable effects in

- Top FCNC [BR($t \rightarrow c\gamma, cZ$)]: below future LHC sensitivity
- CPV in $D \overline{D}$ mixing $[\phi_{12}]$: below future LHCb sensitivity
- Direct CPV in D decay $[A_{CP}^D(\pi\pi, KK)]$: below per mille level

What if $A_{CP}^D(\pi\pi) - A_{CP}^D(KK) = -0.67 \pm 0.16\%$ is new physics?

Up sector within $U(2)^3$

Minimal $U(2)^3$: prediction of no detectable effects in

- Top FCNC [BR($t \rightarrow c\gamma, cZ$)]: below future LHC sensitivity
- CPV in $D \overline{D}$ mixing $[\phi_{12}]$: below future LHCb sensitivity
- Direct CPV in D decay $[A_{CP}^D(\pi\pi, KK)]$: below per mille level

What if
$$A_{CP}^D(\pi\pi) - A_{CP}^D(KK) = -0.67 \pm 0.16\%$$
 is new physics?

Generic $U(2)^3$

- could explain ΔA_{CP}^{exp}
- respecting all current flavour and EDMs bounds
- keeping the same null predictions for $\mathsf{BR}(t o c\gamma, cZ)$ and ϕ_{12}

How to know it is $U(2)^3$? (if some new physics signal seen)

s - d correlation in B decays (same as in SM)

Then: how to know it is not $U(3)^3$?

Qualitative picture:

	Chirality o	conserving	Chirality breaking	
	$\Delta B = 1, 2$	$\Delta S = 1, 2$	$\Delta B = 1$	$\Delta C = 1$
$U(3)^3$ moderate t_{eta}	\mathbb{R}	\mathbb{R}	\mathbb{C}	0
$MU(2)^3$, $U(3)^3$ large t_β	$\mathbb C$	${\mathbb R}$	\mathbb{C}	0
$GU(2)^{3}$	\mathbb{C}	\mathbb{C}	\mathbb{C}	$\mathbb C$

Legend: $\mathbb{C}=$ new effect, $~\mathbb{R}=$ new effect aligned with SM, ~0= negligible new effect

Quantitavely: smaller effects in MFV at moderate tan β

 $U(3)^3$ at large tan β : other tree level effects expected [Feldmann, Mannel 2008 and Kagan et al. 2009]

Filippo Sala, SNS & INFN Pisa Flavour physics from an approximate $U(2)^3$ symmetry 9/17

- Motivations
- Breaking $U(2)^3$
- Phenomenology
- $U(2)^3$ in Supersymmetry and in Composite Higgs Models
- Conclusions

• $U(2)^3$ in Supersymmetry and in Composite Higgs Models

SUSY realisation of Minimal $U(2)^3$

SUSY with heavy 1,2 generations

✓ Flavour blind CP violation (EDMs)

(Natural and ok with collider bounds)

SUSY realisation of Minimal $U(2)^3$

SUSY with heavy 1,2 generations

✓ Flavour blind CP violation (EDMs)

(Natural and ok with collider bounds)

$${\cal L}_{{\sf F}-{\it breaking}} \sim ~ { ilde q}^\dagger \, { ilde m}^2(\Delta Y, {m V}) \, { ilde q}$$

$$W^{L} = \begin{pmatrix} c_{d} & \kappa^{*} & -\kappa^{*} s_{L} e^{i\gamma} \\ -\kappa & c_{d} & -c_{d} s_{L} e^{i\gamma} \\ 0 & s_{L} e^{-i\gamma} & 1 \end{pmatrix} \qquad \qquad d_{i}^{L,R} = \tilde{d}_{j}^{L,R}$$
$$W^{R} = 1 \qquad \qquad \kappa = s_{d} e^{i\beta}$$

- One new angle s_L and 1 new CP-violating phase γ
- Minimal breaking leads to flavour alignment

SUSY $\Delta F = 2$: K and B mixings

New parameters by solving CKM fit tensions

$$|\xi_L| \in [0.8, 2.1], \ \phi_\Delta \in [-9^\circ, -1^\circ],$$

 $x \in [-86^\circ, -25^\circ] \ \text{or} \ [94^\circ, 155^\circ]$

SUSY $\Delta F = 2$: K and B mixings

New parameters by solving CKM fit tensions

$$|\xi_L| \in [0.8, 2.1], \ \phi_\Delta \in [-9^\circ, -1^\circ],$$

 $\gamma \in [-86^\circ, -25^\circ] \ ext{or} \ [94^\circ, 155^\circ]$

Prediction: $m_{\tilde{b}}, m_{\tilde{g}} \lesssim 1.5 \text{ TeV}$

SUSY $\Delta F = 1$: selected *B* decays

CP asymmetries in
$$B \rightarrow \phi K_S, \ \eta' K_S, \ S_{\phi K_S}, \ S_{\eta' K_S}$$

 $S_f = \sin(2\beta + \phi_{\Delta} + \delta_f), \quad \delta_f(\xi_L, \gamma, m_{\tilde{b}}, m_{\tilde{g}}, \mu \tan \beta - A_b)$

SUSY $\Delta F = 1$: selected *B* decays

CP asymmetries in
$$B
ightarrow \phi K_S, \ \eta' K_S, \ S_{\phi K_S}, \ S_{\eta' K_S}$$

 $S_f = \sin\left(2eta + \phi_{\Delta} + \delta_f
ight), \quad \delta_f(\xi_L, \gamma, m_{\widetilde{b}}, m_{\widetilde{g}}, \mu \taneta - A_b)$

Relevant for:

- Future improvement in sensitivity: a 5 ÷ 10 factor!
- Sizeable effects with negligible flavour blind phases

Similar clean correlations also for $A_{CP}(B \to K^* \mu^+ \mu^-, B \to X_s \gamma)$

Message

Peculiar phenomenological pattern of interest for LHC

CHM realisation of Minimal $U(2)^3$

Flavour symmetric strong sector as an alternative to "RS-GIM" mechanism $\mathcal{L}_{s} = \lambda_{U} \bar{Q}_{L}^{u} H U_{R} + \lambda_{D} \bar{Q}_{L}^{d} \tilde{H} D_{R} + M_{Q}^{u} \bar{Q}_{L}^{u} Q_{R}^{u} + M_{Q}^{d} \bar{Q}_{L}^{d} Q_{R}^{d} + M_{U} \bar{U}_{L} U_{R} + M_{D} \bar{D}_{L} D_{R}$

Flavour violation only in composite-elementary mixings:

CHM realisation of Minimal $U(2)^3$

Flavour symmetric strong sector as an alternative to "RS-GIM" mechanism $\mathcal{L}_{s} = \lambda_{U} \bar{Q}_{L}^{u} H U_{R} + \lambda_{D} \bar{Q}_{L}^{d} \tilde{H} D_{R} + M_{Q}^{u} \bar{Q}_{L}^{u} Q_{R}^{u} + M_{Q}^{d} \bar{Q}_{L}^{d} Q_{R}^{d} + M_{U} \bar{U}_{L} U_{R} + M_{D} \bar{D}_{L} D_{R}$

Flavour violation only in composite-elementary mixings:

 $\checkmark\,$ distinguishing generations \Rightarrow light quarks can be mostly elementary

 \Rightarrow easier to satisfy precision and collider constraints!

see also $U(3)^2 \times U(2)$, [Redi 2012]

CHM flavour phenomenology

CHM flavour phenomenology

Tree level FCNCs:	Chir. co	Chir. breaking	
	$\Delta B = 1, 2$	$\Delta S = 1, 2$	$\Delta B = 1$
$U(3)^3$ moderate t_{eta}	\mathbb{R}	\mathbb{R}	\mathbb{C}
<i>U</i> (3) ³ R-comp.	\square	\mathbb{R}	0
$U(3)^3$ L-comp.	0	0	0
$MU(2)^3$, $U(3)^3$ large t_β	\mathbb{C}	\mathbb{R}	C
$MU(2)^{3}$ R-comp.	\mathbb{C}	$\mathbb R$	0
$MU(2)^{3}$ L-comp.	$\mathbb R$	$\mathbb R$	\mathbb{C}

Filippo Sala, SNS & INFN Pisa Flavour physics from an approximate $U(2)^3$ symmetry 15/17

Summary of $U(2)^3$ phenomenology

$$\Delta F = 2$$
 • new phase ϕ_B in $B - \bar{B}$ mixing

• M^{B_d}/M^{B_s} SM-like

• no new phase in K mixing

 $\Delta B = 1$ • effects *can* be large

Up • effects cannot be large $(\Delta A_{CP}^D \text{ in Generic } U(2)^3 \text{ can})$

Observables to watch: $S_{\psi\phi}$, $S_{\phi K}$, $b \to s(d)\ell\bar{\ell}, \nu\bar{\nu}$, $K \to \pi\nu\bar{\nu}$, ...

Summary of $U(2)^3$ phenomenology

$$\Delta F = 2$$
 • new phase ϕ_B in $B - \overline{B}$ mixing

- M^{B_d}/M^{B_s} SM-like
- no new phase in K mixing

•
$$m_{\tilde{b}}, m_{\tilde{g}} \lesssim 1.5 \,\mathrm{TeV}$$

$$\Delta B = 1$$
 • effects *can* be large

- clean correlations between observables
- Up effects cannot be large $(\Delta A_{CP}^D \text{ in Generic } U(2)^3 \text{ can})$

Observables to watch: $S_{\psi\phi}$, $S_{\phi K}$, $b \to s(d)\ell\bar{\ell}, \nu\bar{\nu}$, $K \to \pi\nu\bar{\nu}$, ...

Summary of $U(2)^3$ phenomenology

$$\Delta F = 2$$
 • new phase ϕ_B in $B - \overline{B}$ mixing

- M^{B_d}/M^{B_s} SM-like
- no new phase in K mixing

• $m_{\tilde{b}}, m_{\tilde{g}} \lesssim 1.5 \,\mathrm{TeV}$

$$\Delta B = 1$$
 • effects *can* be large

- clean correlations between observables
- Up effects cannot be large $(\Delta A_{CP}^D \text{ in Generic } U(2)^3 \text{ can})$

Some effects cannot be large (implementation dependent)

Observables to watch: $S_{\psi\phi}$, $S_{\phi K}$, $b \rightarrow s(d) \ell \bar{\ell}, \nu \bar{\nu}$, $K \rightarrow \pi \nu \bar{\nu}$, ...

Filippo Sala, SNS & INFN Pisa Flavour physics from an approximate
$$U(2)^3$$
 symmetry 16/17

 $U(2)^3$ is in the data

Naturally safe with flavour bounds

Large effects allowed

SUSY Natural and ok with collider bounds Small EDMs

CHM Collider and precision constraints easier to satisfy than $U(3)^3$

 $U(2)^3$ is in the data

Naturally safe with flavour bounds

Large effects allowed

SUSY Natural and ok with collider bounds Small EDMs

CHM Collider and precision constraints easier to satisfy than $U(3)^3$

Thank you for your attention!

Back up

$\Delta F = 1: \epsilon'_K$

A significant limit for both $U(2)^3$ and $U(3)^3$

$$\mathcal{H}_{\mathsf{eff}}^{\Delta S=1} = \frac{1}{\Lambda^2} \xi_{ds} \left(\bar{d}_L^{\alpha} \gamma_{\mu} s_L^{\beta} \right) \left[c_K^d \left(\bar{d}_R^{\beta} \gamma_{\mu} d_R^{\alpha} \right) + c_K^u \left(\bar{u}_R^{\beta} \gamma_{\mu} u_R^{\alpha} \right) \right]$$

$$\left| rac{\epsilon'}{\epsilon}
ight| \simeq rac{|\mathrm{Im}A_2|}{\sqrt{2} \left|\epsilon\right| \mathrm{Re}A_0}, \qquad \langle (\pi\pi)_{I=2} | Q^u_{LR} + Q^d_{LR} | K
angle = 0$$

$$c_{K}^{u,d} \lesssim 0.1 \div 0.2 \left(rac{3\,{
m TeV}}{\Lambda^2}
ight)$$

Still roughly consistent with previous discussion of bounds

U(2)³+ SUSY solves the "problem"! box diagrams are suppressed by heavy ũ, d̃