FLASY 2012

Dortmund – July 1st, 2012

Family symmetries in the light of large θ_{13}

Christoph Luhn

Prologue

- ► remarkable results from neutrino oscillation experiments
- ► tri-bimaximal lepton mixing (until recently)
- family symmetries like A_4 and S_4
- ▶ origin of the Klein symmetry in the neutrino sector
- ► strategies of implementing a sizable reactor angle θ_{13} (post T2K)
 - tri-bimaximal mixing plus corrections (from extra ingredient)
 - · new family symmetries \rightarrow talk by Ding
 - \cdot non-standard vacuum configurations \rightarrow talks by King & Spinrath

A brief history of neutrino mixing

- ► atmospheric neutrinos
 - · $\nu_{\mu} / \overline{\nu}_{\mu}$ disappear Super-Kamiokande (1998)
- ► accelerator neutrinos
 - · ν_{μ} disappear K2K (2002), MINOS (2006)
 - · ν_{μ} converted to ν_{τ} OPERA (2010 & 2012)
 - · ν_{μ} converted to ν_{e} T2K, MINOS (2011)
- ► solar neutrinos
 - · ν_e disappear Chlorine (1998), Gallium (1999 2009), Super-Kamiokande (2002), Borexino (2008)
 - · ν_e converted to $(\nu_\mu + \nu_\tau)$ SNO (2002)
- ► reactor neutrinos
 - · $\overline{\nu}_e$ disappear Double Chooz (2011), Daya Bay, RENO (2012)
 - · $\overline{\nu}_e$ disappear KamLAND (2002)

2011/2012 story of non-zero θ_{13}

Daya Bay [arXiv:1203.1669]

- · $\theta_{13} \neq 0$ disfavored at ~ 5.2 σ
- $\cdot 7.9^{\circ} \lesssim \theta_{13} \lesssim 9.6^{\circ}$

RENO [arXiv:1204.0626]

- · $\theta_{13} \neq 0$ disfavored at ~ 4.9σ
- $\cdot 8.7^{\circ} \lesssim \theta_{13} \lesssim 10.8^{\circ}$

Three neutrino flavor mixing

(in diagonal charged lepton basis)

flavor PMNS mixing mass m_3^2 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \qquad {}^{m_2^2}_{m_1^2}$

$$u_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & e^{\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & e^{\frac{\alpha_3}{2}} \end{pmatrix}$$

Tri-bimaximal lepton mixing vs. global neutrino fits

ĺ	PMNS-angles	tri-bimax.	1σ exp.	1σ exp.
	$\sin^2 \theta_{12}$:	$\frac{1}{3}$	0.303 - 0.335	0.291 - 0.325
\Rightarrow	$\sin^2\theta_{23}:$	$\frac{1}{2}$	0.44 - 0.58	0.37 - 0.44
	$\sin^2 \theta_{13}$:	0	0.022 - 0.030	0.021 - 0.028
			Forero et al. (2012)	Fogli et al. (2012)

- · TB mixing fits relatively well \rightarrow family symmetry, e.g. A_4, S_4
- how to accommodate sizable $\theta_{13} \sim 8^{\circ} 10^{\circ}$?

Non-Abelian family symmetries

- $\cdot \,$ unify three families in multiplets of family symmetry
- $\cdot\,$ group should have three-dimensional representations

Symmetries of the mass matrices

Origin of the Klein symmetry

- "direct" models
 - · Klein symmetry $\mathcal{K} \subset$ family symmetry \mathcal{G}
 - flavon fields ϕ break ${\mathcal G}$ down to ${\mathcal K}$ in neutrino sector
 - for TB mixing (k_1, k_2, h) generate S_4
- ► "indirect" models
 - · Klein symmetry \mathcal{K} not necessarily \subset family symmetry \mathcal{G}
 - $\cdot \ \mathcal{G}$ responsible for generating particular flavon VEV configurations
 - for TB mixing from e.g. $\Delta(27)$, $Z_7 \rtimes Z_3$

$$\langle \phi_1 \rangle \propto \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} \qquad \langle \phi_2 \rangle \propto \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \qquad \langle \phi_3 \rangle \propto \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}$$

 $\Rightarrow \quad \mathcal{L}_{\nu} \quad \sim \quad \nu \left(\phi_1 \phi_1^T + \phi_2 \phi_2^T + \phi_3 \phi_3^T \right) \nu \ H H$

Typical model setup

Implementing sizable θ_{13}

direct models

indirect models

TB plus corrections

TB plus corrections

other family symmetries with non-standard \mathcal{K} \rightarrow talk by Ding

> non-standard flavon VEV configurations \rightarrow talks by King & Spinrath

TB plus non-diagonal charged leptons

Charged lepton corrections to TB mixing

- \cdot charged lepton mass matrix might not be diagonal (GUTs)
- $\cdot \quad U_{\rm PMNS} = V_{\ell_L} V_{\nu_L}^{\dagger} \quad \text{and} \quad V_{\nu_L}^{\dagger} = U_{\rm TB}$

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & \hat{s}_{23} \\ 0 & -\hat{s}_{23}^* & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & \hat{s}_{13} \\ 0 & 1 & 0 \\ -\hat{s}_{13}^* & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & \hat{s}_{12} & 0 \\ -\hat{s}_{12}^* & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{12} e^{i\delta_{12}} \approx \frac{1}{\sqrt{3}} \left(e^{i\delta_{12}^{\nu}} - \theta_{12}^{\ell} e^{i\delta_{12}^{\ell}} + \theta_{13}^{\ell} e^{i(\delta_{13}^{\ell} - \delta_{23}^{\nu})} \right)$$

$$s_{23} e^{i\delta_{23}} \approx \frac{1}{\sqrt{2}} \left(e^{i\delta_{23}^{\nu}} - \theta_{23}^{\ell} e^{i\delta_{23}^{\ell}} \right)$$

$$s_{13} e^{i\delta_{13}} \approx \frac{1}{\sqrt{2}} \left(-\theta_{12}^{\ell} e^{i(\delta_{12}^{\ell} + \delta_{23}^{\nu})} - \theta_{13}^{\ell} e^{i\delta_{13}^{\ell}} \right)$$

$$c_{ij} = \cos \theta_{ij}$$

 $\hat{s}_{ij} = \sin \theta_{ij} e^{-i\delta_{ij}}$

$$\cdot \ \theta_{12}^{\ell} \sim \theta_C \sim 0.22 \quad \rightarrow \quad \theta_{13} \sim 9^{\circ}$$

 $\cdot\,$ not (easily) compatible with Georgi-Jarlskog relations

TB plus new TB breaking flavon

An S_4 model of leptons

matter	L	$ au^c$	μ^{c}	e^{c}	N^c	H_u	H_d	
S_4	3	1′	1	1	3	1	1	
Z_3^{ν}	1	2	2	2	2	0	0	
Z_3^ℓ	0	2	1	0	0	0	0	

King, Luhn (2011)

$$\langle \varphi_{\ell} \rangle = \begin{pmatrix} 0 \\ v_{\ell} \\ 0 \end{pmatrix} \quad \langle \eta_{\mu} \rangle = \begin{pmatrix} 0 \\ w_{\mu} \end{pmatrix} \qquad \begin{array}{c} \text{flavons} & \varphi_{\ell} & \eta_{\mu} & \eta_{e} & \varphi_{\nu} & \eta_{\nu} & \xi_{\nu} & \zeta_{\nu} \\ \hline S_{4} & \mathbf{3'} & \mathbf{2} & \mathbf{2} & \mathbf{3'} & \mathbf{2} & \mathbf{1} & \mathbf{1'} \\ \hline Z_{3}^{\nu} & 0 & 0 & 0 & \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{0} \\ \hline Z_{3}^{\ell} & \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}$$

$$\langle \varphi_{\nu} \rangle = v_{\nu} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \langle \eta_{\nu} \rangle = w_{\nu} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \langle \xi_{\nu} \rangle = u_{\nu} \qquad \langle \zeta_{\nu} \rangle = z_{\nu}$$

Charged lepton sector

$$W_{\ell} \sim \left[\frac{1}{M} (L\varphi_{\ell})_{1'} \tau^{c} + \frac{1}{M^{2}} (L\varphi_{\ell})_{2} \eta_{\mu} \mu^{c} + \frac{1}{M^{2}} (L\varphi_{\ell})_{2} \eta_{e} e^{c} \right] H_{d}$$

- · Z_3^{ℓ} controls pairing of flavons with right-handed charged fermions
- · different S_4 contractions of $(L\varphi_\ell)$ pick out different L_i components

$$(L\varphi_{\ell})_{1'} = L_{1}\varphi_{\ell 1} + L_{2}\varphi_{\ell 3} + L_{3}\varphi_{\ell 2} \rightarrow L_{3}$$
$$(L\varphi_{\ell})_{2} = \begin{pmatrix} L_{1}\varphi_{\ell 3} + L_{2}\varphi_{\ell 2} + L_{3}\varphi_{\ell 1} \\ L_{1}\varphi_{\ell 2} + L_{2}\varphi_{\ell 1} + L_{3}\varphi_{\ell 3} \end{pmatrix} \rightarrow \begin{pmatrix} L_{2} \\ L_{1} \end{pmatrix}$$

- \cdot mass matrix diagonal by construction
- m_{τ} heavier than m_{μ} and m_{e}
- · hierarchy between m_{μ} and m_e due to hierarchy of VEVs w_{μ} and w_e
- $\cdot\,$ just a toy model of charged lepton sector (with GUTs off-diagonals)

Neutrino sector

$$W_{\nu} \sim LN^{c}H_{u} + (\varphi_{\nu} + \eta_{\nu} + \xi_{\nu})N^{c}N^{c} + \frac{1}{M}\zeta_{\nu}\eta_{\nu}N^{c}N^{c}$$

- $\cdot\,$ trivial Dirac neutrino Yukawa
 $\checkmark\,$
- \cdot neutrino mixing governed by heavy right-handed neutrinos
- · S_4 multiplication rule $(N^c \sim \mathbf{3})$

 ${f 3} \ \otimes \ {f 3} \ = \ ({f 3}' \ + \ {f 2} \ + \ {f 1})_s$

- three TB conserving flavons $\varphi_{\nu} \quad \eta_{\nu} \quad \xi_{\nu}$
- · ζ_{ν} flavon is neutral except for S_4 ($\zeta_{\nu} \sim \mathbf{1'}$)

$${f 1}'\,\otimes\,\,({f 3}\,\,\otimes\,\,{f 3})\,\,=\,\,({f 3}\,\,+\,\,{f 2}\,\,+\,\,{f 1}')_s$$

- · only one extra term involving ζ_{ν}
- this breaks TB structure (at higher order) ...

Breaking of the TB Klein symmetry \mathcal{K}

Dirac term LN^cH_u respects $\mathcal{K} \subset S_4$

Majorana terms $\left(\varphi_{\nu} + \eta_{\nu} + \xi_{\nu} + \frac{1}{M}\zeta_{\nu}\eta_{\nu}\right) N^{c}N^{c}$ respect k_{1} but break k_{2}

Resulting mixing

$$M_{R} = \frac{M_{1} + M_{3}}{6} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \frac{2M_{2} + M_{3} - M_{1}}{6} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \frac{M_{1} + M_{2} - M_{3}}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ + \Delta \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \leftarrow \text{ small TB breaking term}$$

$$U_{\rm PMNS} \approx \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix}$$

_

$$\operatorname{Re} \alpha \approx -\sqrt{3} \cdot \left[\operatorname{Re} \left(\frac{\Delta}{M_1 - M_3} \right) + \operatorname{Im} \left(\frac{\Delta}{M_1 - M_3} \right) \frac{\operatorname{Im} \left(\frac{M_1 + M_3}{M_1 - M_3} \right)}{\operatorname{Re} \left(\frac{M_1 + M_3}{M_1 - M_3} \right)} \right]$$
$$\operatorname{Im} \alpha \approx \sqrt{3} \cdot \frac{\operatorname{Im} \left(\frac{\Delta}{M_1 - M_3} \right)}{\operatorname{Re} \left(\frac{M_1 + M_3}{M_1 - M_3} \right)}$$

 \Longrightarrow

Trimaximal neutrino mixing

- · second column of $U_{\rm PMNS} \propto (1, 1, 1)^T$
- $\cdot\,$ one could have guessed this special structure
 - (i) $(1,1,1)^T$ is an eigenvector of M_R
 - (*ii*) k_1 generator of TB Klein symmetry \mathcal{K} unbroken
- · such a TB breaking affects θ_{13} and θ_{23} but not θ_{12}
- get correlations between deviation parameters r, a, s

$$\sin \theta_{13} = \frac{1}{\sqrt{2}} r$$
 $\sin \theta_{23} = \frac{1}{\sqrt{2}} (1+a)$ $\sin \theta_{12} = \frac{1}{\sqrt{3}} (1+s)$

$$r\cos\delta \approx -\frac{2}{\sqrt{3}}\operatorname{Re} \alpha$$
 $a \approx \frac{1}{\sqrt{3}}\operatorname{Re} \alpha$ $\delta \approx \pi + \arg \alpha$
 $\rightarrow \text{ testable sum rules } \qquad a \approx -\frac{1}{2}r\cos\delta \qquad s \approx 0$

Revisiting a GUT model with TB neutrino mixing

An $S_4 \times SU(5)$ model

matter	T_3	T	F	N^c	H_5	$H_{\overline{5}}$	$H_{\overline{45}}$	
SU(5)	10	10	$\overline{5}$	1	5	$\overline{5}$	$\overline{45}$	
S_4	1	2	3	3	1	1	1	
U(1)	0	5	4	-4	0	0	1	

Hagedorn, King, Luhn (2012)

$\langle \Phi_2^u \rangle \propto \begin{pmatrix} 0\\ 1 \end{pmatrix}$	flavons	Φ_2^u	$\widetilde{\Phi}_2^u$	Φ_3^d	$\widetilde{\Phi}_3^d$	Φ_2^d	$\Phi^{\nu}_{3'}$	Φ_2^{ν}	Φ_1^{ν}	η
$\left(1 \right)$	S_4	2	2	3	3	2	3′	2	1	1
$\langle \widetilde{\Phi}_2^u \rangle \propto \begin{pmatrix} 0\\ 1 \end{pmatrix}$	U(1)	-10	0	-4	-11	1	8	8	8	7

$$\langle \Phi_3^d \rangle \propto \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad \langle \widetilde{\Phi}_3^d \rangle \propto \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \quad \langle \Phi_2^d \rangle \propto \begin{pmatrix} 1\\0 \end{pmatrix} \quad \langle \Phi_{3'}^\nu \rangle \propto \begin{pmatrix} 1\\1\\1 \end{pmatrix} \quad \langle \Phi_2^\nu \rangle \propto \begin{pmatrix} 1\\1 \end{pmatrix}$$

Charged fermions

up sector $10 \ 10 \ 5_H$

$$M_u \sim \begin{pmatrix} \lambda^8 & 0 & 0 \\ 0 & \lambda^4 & 0 \\ 0 & 0 & 1 \end{pmatrix} v_u$$

- \cdot diagonal up quark matrix
- \cdot renormalizable top Yukawa

down sector $\overline{5} \ 10 \ \overline{5}_H \ \& \ \overline{5} \ 10 \ \overline{45}_H$

$$M_d \sim \begin{pmatrix} 0 & \lambda^5 & \lambda^5 \\ \lambda^5 & \lambda^4 & \lambda^4 \\ 0 & 0 & \lambda^2 \end{pmatrix} v_d \qquad M_\ell \sim \begin{pmatrix} 0 & \lambda^5 & 0 \\ \lambda^5 & \mathbf{3} \lambda^4 & 0 \\ \lambda^5 & \mathbf{3} \lambda^4 & \lambda^2 \end{pmatrix} v_d$$

- · Georgi-Jarlskog relations $m_b \sim m_{\tau}$, $m_s \sim \frac{1}{3}m_{\mu}$, $m_d \sim 3m_e$
- · Gatto-Sartori-Tonin relation $M_{12}^d = M_{21}^d \rightarrow \theta_{12}^d \sim \sqrt{\frac{m_d}{m_s}} \sim \lambda$
- · charged lepton mixing $\theta_{12}^{\ell} \sim \frac{1}{3} \lambda \sim 4^{\circ}$

Neutrino sector and PMNS mixing

$$W_{\nu} \sim F N^{c} H_{5} + (\Phi_{3'}^{\nu} + \Phi_{2}^{\nu} + \Phi_{1}^{\nu}) N^{c} N^{c} + \frac{1}{M} \eta \Phi_{2}^{d} N^{c} N^{c}$$

- $\cdot \,$ new flavon η does not break TB symmetry
- effective doublet $\langle \eta \Phi_2^d \rangle \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ respects k_1 but breaks k_2
- \cdot neutrino sector has trimaximal structure

- $\cdot\,$ charged lepton corrections modify previous sum rules
- $\cdot \,$ additional phases enter \rightarrow sum rule bounds

$$|a| \lesssim \frac{1}{2} \left(r + \frac{\theta_C}{3} \right) |\cos \delta| \qquad |s| \lesssim \frac{\theta_C}{3}$$

Does this work in A_4 models too?

A_4 models with trimaximal neutrino mixing

- $A_4 \subset S_4$ but without the k_2 generator
- A_4 models with TB mixing: absence of flavons in the $\mathbf{1}'$ and $\mathbf{1}''$ $\rightarrow k_2$ symmetry arises accidentally
- add $\mathbf{1'}$ and $\mathbf{1''}$ flavons to break k_2 King, Luhn (2011)

$$W_{\nu} \sim LN^{c}H_{u} + (\varphi_{\nu} + \xi_{\nu} + \xi_{\nu}' + \xi_{\nu}'')N^{c}N^{c}$$

- · k_1 symmetry is left unbroken
- \cdot trimaximal neutrino mixing
- effects of ξ'_{ν} and ξ''_{ν} not suppressed
- · partial cancellation to a level of about 20% required
- a possible such $A_4 \times SU(5)$ GUT model exists Cooper, King, Luhn (2012)

Conclusion

- experimental measurement of $\theta_{13} \sim 8^{\circ} 10^{\circ}$
- ► review role of family symmetries

• implementing non-zero θ_{13} via corrections to TB mixing

- $\cdot \,$ from non-diagonal charged leptons
- \cdot S₄ model of leptons with TB breaking flavon
- · $S_4 \times SU(5)$ model
- similarly possible for A_4
- ▶ sum rules/sum rule bounds for mixing angles

Thank you