# Correlations in Minimal $U(2)^3$ models and an SO(10) SUSY GUT model facing new data

Jennifer Girrbach

Institute for Advanced Study Technical University Munich (TUM)



FLASY12 Workshop on Flavor Symmetries, Dortmund

30.06-04.07. 2012

(日) (周) (日) (日) (日)

## Outline for the next 20 minutes

- Introduction
- 2 Correlations of  $\Delta F = 2$  observables:
  - CMFV vs.  $MU(2)^3$  models and the role of  $|V_{ub}|$
- SO(10) SUSY GUT: CMM model
  - Flavour structure
  - Phenomenology
- Summary

・ 同 ト ・ ヨ ト ・ ヨ ト

#### LHCb results

There were hopes to find clear signals of NP in 
$$S_{\psi\phi}$$
 and  $\mathcal{B}(B_s o \mu^+ \mu^-)$ , but...



Figure: LHCb Collab: PRL 108 (2012), LHCb-CONF-2012-002, Phys. Lett. B 708 (2012), 1203.4493

(ロ) (同) (E) (E)

э

#### Tensions in the Flavour data

$$S_{\psi \kappa_{\boldsymbol{s}}} - |\varepsilon_{\kappa}|$$
 tension  $\longleftrightarrow |V_{ub}|$  problem

• SM:  $S_{\psi K_s} = \sin 2\beta$ ,  $|\varepsilon_K| \propto \sin 2\beta |V_{cb}|^4$ : 3.2 $\sigma$  discrepancy [Buras, Guandagnoli, Phys. Rev. D 78 (2008), Lunghi, Soni, Phys. Lett. B 708 (2012)] •  $\beta_{true} = \beta_{true}(|V_{ub}|, \gamma)$ 



• exclusive (small)  $|V_{ub}|$ :  $S_{\psi K_s}$  in agreement with data,  $|\varepsilon_K|$  below the data • inclusive (large)  $|V_{ub}|$ :  $S_{\psi K_s}$  above data,  $|\varepsilon_K|$  in agreement with data

## Going beyond the SM

#### Great success of Cabibbo Kobayashi Maskawa picture

 $\Rightarrow$  Strong constraints on flavour structure of NP models

#### Remainder of the talk:

Constraint Minimal Flavour Violation (CMFV):

- CKM matrix is the only source of flavour and CP violation
- only SM operators are relevant below electroweak scale

#### 2 $U(2)^3$ models: third generation is special

[Pomarol, Tommasini: hep-ph/9507462; Barbieri, Dvali, Hall: hep-ph/9512388; Barbieri, Buttazzo, Isidori, Jones-Perez, Lodone, Sala, Straub: 1105.2296, 1108.5125, 1203.4218, 1203.4218; Nierste, Crivellin, Hofer: 1111.0246, 0810.1613; Buras, JG: 1206.3878]

Simplest non-MFV extension of the SM

 SUSY-SO(10)-GUT: CMM model as an alternative to MFV [Chang, Masiero, Murayama: hep-ph/0205111;
 JG, Jäger, Knopf, Martens, Nierste, Scherrer, Wiesenfeldt: 1101.6047]

Jennifer Girrbach TUM-IAS

30.06-04.07. 2012 FLASY12 Dortmund

#### Phenomenological consequences of CMFV

• no new phases:

$$\varphi_{\mathcal{K}} = \varphi_{\mathcal{B}_{\boldsymbol{d}}} = \varphi_{\mathcal{B}_{\boldsymbol{s}}} = 0 \quad \Rightarrow \quad S_{\psi \mathcal{K}_{\boldsymbol{S}}} = \sin 2\beta \,, \quad S_{\psi \phi} = \sin 2|\beta_{\boldsymbol{s}}|$$

•  $\Delta M_{s,d}$  and  $|\varepsilon_K|$  can only be enhanced relative to SM (correlated)

• only exclusive  $|V_{ub}|$ :  $S_{\psi K_s}$  as in SM and  $|\varepsilon_K|$  can be enhanced, but problem with  $\Delta M_{d,s}$  [Buras, JG: 1204.5064]



## $U(2)^3$ model $\rightarrow$ 3rd generation is special

[see talk: F. Sala on Monday]

(국립) 국물) 국물) 문

• Global flavour symmetry  $G_F = U(2)_Q \times U(2)_u \times U(2)_d$  broken minimally by three spurions

$$\Delta Y_{u} = (\mathbf{2}, \overline{\mathbf{2}}, 1), \quad \Delta Y_{d} = (\mathbf{2}, 1, \overline{\mathbf{2}}), \quad V = (\mathbf{2}, 1, 1)$$

- motivated by observed pattern of quark masses and mixings
- natural embedding for SUSY with heavier 1st/2nd gen. and light 3rd gen. of squarks
- general consequences of  $U(2)^3$  and breaking pattern concerning  $\Delta F = 2$ 
  - K system governed by MFV structure (no new phases:  $\varphi_{\kappa} = 0$ )
  - Corrections in  $B_{d,s}$  system proportional to CKM structure of SM and universal:  $(C_{B_d} = C_{B_s} =: r_B)$
  - new (universal) phase only in  $B_{d,s}$  system  $\varphi_d = \varphi_s = \varphi_{new}$
- These three condition + assumption: only SM operators relevant:  $MU(2)^3$

•  $\Delta F = 2$  observables:

$$\begin{split} S_{\psi K_{\boldsymbol{S}}} &= \sin(2\beta + 2\varphi_{\text{new}}) \,, \\ \Delta M_{s,d} &= \Delta M_{s,d}^{\text{SM}} r_{\boldsymbol{B}} \,, \end{split}$$

[Buras, JG: 1206.3878]

$$S_{\psi\phi} = \sin(2|\beta_s| - 2\varphi_{\text{new}}),$$
  

$$\varepsilon_K = r_K \varepsilon_K^{\text{SM,tt}} + \varepsilon_K^{\text{SM,cc+ct}}$$



For different values of  $|V_{ub}|$ : 0.0046 (blue)- 0.0028 (purple)

negative  $S_{\psi\phi}$  only for small  $|V_{ub}|$  possible

incl.  $|V_{ub}|$ :  $S_{\psi\phi} \ge S_{\psi\phi}^{\mathsf{SM}}$ 

Determine  $|V_{ub}|$  in  $MU(2)^3$  with  $S_{\psi\phi}$  and  $S_{\psi\kappa_s}$ 

(日) (同) (日) (日)

Jennifer Girrbach TUM-IAS

э

•  $\Delta F = 2$  observables:

[Buras, JG: 1206.3878]

$$\begin{split} S_{\psi K_{s}} &= \sin(2\beta + 2\varphi_{\text{new}}), \qquad S_{\psi \phi} = \sin(2|\beta_{s}| - 2\varphi_{\text{new}}), \\ \Delta M_{s,d} &= \Delta M_{s,d}^{\text{SM}} r_{B}, \qquad \varepsilon_{K} = r_{K} \varepsilon_{K}^{\text{SM,tt}} + \varepsilon_{K}^{\text{SM,cc+ct}} \end{split}$$



•  $\Delta F = 2$  observables:

[Buras, JG: 1206.3878]

$$\begin{split} S_{\psi \kappa_{s}} &= \sin(2\beta + 2\varphi_{\text{new}}), \qquad S_{\psi \phi} = \sin(2|\beta_{s}| - 2\varphi_{\text{new}}), \\ \Delta M_{s,d} &= \Delta M_{s,d}^{\text{SM}} r_{B}, \qquad \varepsilon_{\kappa} = r_{\kappa} \varepsilon_{\kappa}^{\text{SM,tt}} + \varepsilon_{\kappa}^{\text{SM,cc+ct}} \end{split}$$



#### Concrete SUSY-SO(10)-GUT: CMM model

30.06-04.07. 2012 FLASY12 Dortmund

э

# Flavour and SUSY GUTs

#### Flavour mixing:

• (left-handed) quarks: CKM matrix • neutrinos: PMNS matrix

$$V_{\mathsf{CKM}} = \begin{pmatrix} \bullet & \bullet & \cdot \\ \bullet & \bullet & \bullet \\ \cdot & \bullet & \bullet \end{pmatrix}$$

SU(5) multiplets link quarks to leptons

$$\overline{\mathbf{5}}_{1} = \begin{pmatrix} \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{e}_{L} \\ -\nu_{e} \end{pmatrix}, \qquad \overline{\mathbf{5}}_{2} = \begin{pmatrix} \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \boldsymbol{\mu}_{L} \\ -\nu_{\mu} \end{pmatrix}, \qquad \overline{\mathbf{5}}_{3} = \begin{pmatrix} \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \mathbf{\tau}_{L} \\ -\nu_{\tau} \end{pmatrix}$$

 $U_{\rm PMNS} \approx \begin{pmatrix} \bullet & \bullet & \cdot \\ \bullet & \bullet & \bullet \end{pmatrix}$ 

Idea of Chang, Masiero, Murayama; Moroi

neutrino mixing angle  $\theta_{23} \approx 45^{\circ}$  induce large  $\tilde{b}_R - \tilde{s}_R$ - and  $\tilde{\tau}_L - \tilde{\mu}_L$ -mixing  $\Rightarrow$  new  $b_R \rightarrow s_R$  transitions from gluino-squark loops possible

### Flavour structure CMM model

Key ingredients: weak basis with

$$\boxed{\mathbf{Y}_{d} = \mathbf{Y}_{\ell}^{\top}} = V_{\mathsf{CKM}}^{\star} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} U_{D}, \qquad U_{D} = U_{\mathsf{PMNS}}^{*} \operatorname{diag}(1, e^{i\xi}, 1)$$

and right-handed down squark mass matrix:

$$m_{\tilde{d}}^2(M_Z) = \operatorname{diag}\left(m_{\tilde{d}_1}^2, m_{\tilde{d}_1}^2, m_{\tilde{d}_1}^2\left(1 - \Delta_{\tilde{d}}\right)\right)$$

 $\Delta_{\widetilde{d}} \in [0, 1]$ : relative mass splitting  $\Rightarrow$ 

• As in  $U(2)^3$  models: heavy 1st/2nd squark gen. but light 3rd gen.

### Flavour structure CMM model

Key ingredients: weak basis with

$$\boxed{\mathbf{Y}_{d} = \mathbf{Y}_{\ell}^{\top}} = V_{\mathsf{CKM}}^{\star} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} U_{D}, \qquad U_{D} = U_{\mathsf{PMNS}}^{*} \operatorname{diag}(1, e^{i\xi}, 1)$$

and right-handed down squark mass matrix:

$$m_{\widetilde{d}}^2(M_Z) = ext{diag}\left(m_{\widetilde{d}_1}^2, m_{\widetilde{d}_1}^2, m_{\widetilde{d}_1}^2\left(1 - \Delta_{\widetilde{d}}
ight)
ight)$$

 $\Delta_{\widetilde{d}} \in [0,\,1]$ : relative mass splitting  $\Rightarrow$ 

• As in  $U(2)^3$  models: heavy 1st/2nd squark gen. but light 3rd gen. Mass matrix for  $\tilde{d}_R$ ,  $\tilde{s}_R$ ,  $\tilde{b}_R$ :

$$m_{\tilde{D}}^{2} = U_{D} m_{\tilde{d}}^{2} U_{D}^{\dagger} \approx m_{\tilde{d}_{1}}^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{2} \Delta_{\tilde{d}} e^{i\xi} \\ 0 & -\frac{1}{2} \Delta_{\tilde{d}} e^{-i\xi} & 1 \end{pmatrix}$$

CP phase  $\xi$  affects CP violation only in  $B_s - \overline{B}_s$  mixing! Different in  $U(2)^3$  models

### CMM model – short overview

More technical: SO(10) superpotential

[Chang, Masiero, Murayama 03]

$$W_{Y}^{SO(10)} = \frac{1}{2} \mathbf{16}_{i} Y_{1}^{ij} \mathbf{16}_{j} \mathbf{10}_{H} + \mathbf{16}_{i} Y_{2}^{ij} \mathbf{16}_{j} \frac{\mathbf{45}_{H} \mathbf{10}_{H}'}{2M_{\mathsf{Pl}}} + \mathbf{16}_{i} Y_{N}^{ij} \mathbf{16}_{j} \frac{\overline{\mathbf{16}}_{H} \overline{\mathbf{16}}_{H}}{2M_{\mathsf{Pl}}}$$

 $\mathsf{Y}_1^{ij} \to \mathsf{M}_{\textit{u}}, \, \mathsf{M}_{\nu}^{\textit{D}}, \qquad \mathsf{Y}_2^{ij} \to \mathsf{M}_{\textit{d}}, \, \mathsf{M}_{\ell}, \qquad \mathsf{Y}_N^{ij} \to \mathsf{M}_{\nu_{\mathcal{R}}}$ 

Jennifer Girrbach TUM-IAS

30.06-04.07. 2012 FLASY12 Dortmund

12/16

## CMM model – short overview

More technical: SO(10) superpotential

[Chang, Masiero, Murayama 03]

$$W_{Y}^{SO(10)} = \frac{1}{2} \mathbf{16}_{i} Y_{1}^{ij} \mathbf{16}_{j} \mathbf{10}_{H} + \mathbf{16}_{i} Y_{2}^{ij} \mathbf{16}_{j} \frac{\mathbf{45}_{H} \mathbf{10}_{H}'}{2M_{\mathsf{Pl}}} + \mathbf{16}_{i} Y_{N}^{ij} \mathbf{16}_{j} \frac{\overline{\mathbf{16}}_{H} \overline{\mathbf{16}}_{H}}{2M_{\mathsf{Pl}}}$$

$$\mathsf{Y}_1^{ij} \to \mathsf{M}_{\textit{u}}, \, \mathsf{M}_{\nu}^{\textit{D}}, \qquad \mathsf{Y}_2^{ij} \to \mathsf{M}_{\textit{d}}, \, \mathsf{M}_{\ell}, \qquad \mathsf{Y}_N^{ij} \to \mathsf{M}_{\nu_{\mathcal{R}}}$$

• Symmetry breaking via SU(5)  
SO(10) 
$$\xrightarrow{\langle 16_H \rangle, \langle \overline{16}_H \rangle}{\langle 45_H \rangle}$$
 SU(5)  $\xrightarrow{\langle 45_H \rangle}$  G<sub>SM</sub>  $\xrightarrow{\langle 10_H \rangle, \langle 10'_H \rangle}$  SU(3)<sub>C</sub> × U(1)<sub>em</sub>

PMNS rotation is transferred to the (s)quark sector

Nonrenormalizable term  $\propto Y_2$  term gives naturally small tan  $\beta$  and determines whole flavour structure

## Flavour processes with typical CMM effects

- neutrino mixing angle  $\theta_{23} \approx 45^{\circ}$  connects  $2^{nd}$  and  $3^{rd}$  generation
- correlations between observables in quark- and lepton-sector



・ロト ・四ト ・ヨト ・ヨト

## Flavour processes with typical CMM effects

- neutrino mixing angle  $\theta_{23} \approx 45^{\circ}$  connects  $2^{nd}$  and  $3^{rd}$  generation
- correlations between observables in quark- and lepton-sector



- What about  $B_s \to \mu^+ \mu^-? \Rightarrow \mathsf{CMM}$  contributions are negligible  $\checkmark$
- CMM effects in  $K \overline{K}$ ,  $\varepsilon_K$ ,  $B_d \overline{B}_d$ ,  $\mu \to e\gamma$  are suppressed, but small corrections due to dim-5-Yukawa terms needed to fix  $Y_d = Y_\ell^\top$  for 1st/2nd gen. [Trine,Wiesenfeldt,Westhoff: 0904.0378]

<ロト (四) (注) (注) () ()

## Phenomenology

#### Global analysis including RG evolution: Only 7 input paramters

 $M_{
m ew} 
ightarrow M_{
m GUT} 
ightarrow M_{
m SO(10)} 
ightarrow M_{
m Pl} 
ightarrow M_{
m SO(10)} 
ightarrow M_{
m GUT} 
ightarrow M_{
m ew}$ 



• mass of the lightest Higgs  $m_h \gtrsim 115$  GeV for tan  $\beta \ge 6 \rightarrow$  Update needed!

## Summary of CMM model



Jennifer Girrbach TUM-IAS

#### 30.06-04.07. 2012 FLASY12 Dortmund

15/16

э

- $|V_{ub}|$ : situation unclear  $\rightarrow$  need tree-level determination
- Triple correlation  $S_{\psi\phi} S_{\psi\kappa_s} |V_{ub}|$ : crucial test of  $MU(2)^3$  scenario (small dependence on  $\gamma$ )
- Further test on these  $MU(2)^3$  models:  $\varepsilon_K$  and  $\Delta M_{d,s}$
- Negative  $S_{\psi\phi}$  is possible in  $MU(2)^3$  in case of low (exclusive)  $|V_{ub}|$  but then a 25% enhancement of  $\varepsilon_K$  is needed

・ロト ・得ト ・ヨト ・ヨト … ヨ

#### Let's see what LHC will unveil about nature



Jennifer Girrbach TUM-IAS

30.06-04.07. 2012 FLASY12 Dortmund

э

Backup Slides

30.06-04.07. 2012 FLASY12 Dortmund

(日) (문) (문) (문) (문)



19/16

#### New benchmark scenario

| ٩ | 7 input parameters at $M_{\rm SO(10)}$  | ): <i>m</i>       | $m_0^2 m_{\hat{\ell}}$ | f D            | a <sub>0</sub> | $\arg \mu$ | ξ | (	aneta) |
|---|-----------------------------------------|-------------------|------------------------|----------------|----------------|------------|---|----------|
| ٩ | alternatively: inputs at $M_{\rm ew}$ : | $m_{\tilde{u}_1}$ | m <sub>đ1</sub>        | m <sub>ĝ</sub> | $a_1^d$        | $rg\mu$    | ξ | (	aneta) |

| generic MSSM              | mSUGRA/CMSSM                         | CMM model                                                         |  |
|---------------------------|--------------------------------------|-------------------------------------------------------------------|--|
| pprox 120 parameters      | 4 parameters & 1 sign                | 7 input parameters                                                |  |
| SUSY flavour & CP problem | minimize flavour<br>violation ad-hoc | clear flavour structure                                           |  |
| no universality           | universality at $M_{GUT}$            | universality at M <sub>PI</sub><br>but broken at M <sub>GUT</sub> |  |
| quarks & leptons          | quark-lepton-interplay               |                                                                   |  |

(《國》 《문》 《문》 - 문

## Mass splittings



Figure: Relative mass splitting  $\Delta_{\tilde{d}}^{\text{rel}} = 1 - m_{\tilde{d}_3}^2/m_{\tilde{d}_2}^2$  among the bilinear soft terms for the right-handed squarks of the second and third generations with tan  $\beta = 3$  (left) and 6 (right) in the  $M_{\tilde{q}}(M_Z) - a_1^d(M_Z)/M_{\tilde{q}}(M_Z)$  plane for sgn  $\mu = +1$ .

《曰》 《聞》 《臣》 《臣》 三臣

# Perturbativity of $y_t$



•  $y_t$  has a quasi-fixed point  $y_t^2/g^2 = 55/56 \simeq 1$  in SO(10) (for tan  $\beta_c \simeq 2.7$ )

•  $\tan \beta < 2.7 \Rightarrow y_t$  blow-up below  $M_{Pl}$ ;  $\tan \beta > 2.7 \Rightarrow y_t$  stays perturbative

- to test CMM: maximize flavour effects (large  $\Delta_{\tilde{d}}$ , i.e. large  $y_t$ , small tan  $\beta$ )
- CMM model:  $2.7 \lesssim \tan \beta \lesssim 10$

### Higgs mass constraint

- For small tan  $\beta$  lower bound from LEP:  $m_h \ge 114.4$  GeV
- MSSM: Higgs  $h^0$  tends to be light at tree level:  $m_h \leq M_Z |\cos(2\beta)|$
- corrections  $\Delta m_h^2 \propto m_t^4 \ln (m_t^2/m_t^2) \Rightarrow$  (too) small for large  $y_t$ , because of RG evolution (small stop mass  $m_t^2$ )
- larger tan  $\beta$  reduces  $y_t$  and size of flavour effects
- could be relaxed by allowing the Higgs multiplets to have different Planck-scale masses from the sfermions (similarly to the non-universal Higgs model (NUHM))

| small tan $eta$  | $\Leftrightarrow$ | large flavor effects   | $\Leftrightarrow$ | (too) light <i>h</i> <sup>0</sup> |
|------------------|-------------------|------------------------|-------------------|-----------------------------------|
| larger tan $eta$ | $\Leftrightarrow$ | smaller flavor effects | $\Leftrightarrow$ | sufficiently heavy $h^0$          |

《曰》 《聞》 《臣》 《臣》 三臣

#### Example point

 $\begin{array}{ccc} M_{\bar{q}} = 1500 \text{ GeV}, \ m_{\bar{g}3} = 500 \text{ GeV}, \ a_1^d(M_Z)/M_{\bar{q}} = 1.5, \ \arg\mu = 0, \ \tan\beta = 6 & M_{ew} \xrightarrow{\text{Upward evolution}} M_{\text{Pl}} \\ a_0 = 1273 \text{ GeV}, \ m_0 = 1430 \text{ GeV}, \ m_{\bar{g}} = 184 \text{ GeV} & M_{\text{Pl}} \xrightarrow{\text{SO}(10) \& \text{SU}(5) \text{ RGE}} & M_{\text{GUT}} \end{array}$ 

$$\hat{A}_{u}(M_{GUT}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 46 \end{pmatrix} GeV, \quad \hat{A}_{d}(M_{GUT}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0.3 & -3.5 \end{pmatrix} GeV,$$
$$\hat{A}_{\nu}(M_{GUT}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -0.0013 & 0.0023 & 43.4 \end{pmatrix} GeV, \quad \text{non-universal at } M_{GUT}$$

#### RG evolution

- 2-loop RGE in MSSM, 1-loop RGE in SU(5) and SO(10)
- relate Planck-scale inputs to a set of low-energy inputs:
  - masses of RH up- and down-squarks of 1st gen.  $m_{\tilde{u}_1}, m_{\tilde{d}_1}$
  - trilinear term  $a_1^d$  of 1st gen.
  - gluino mass m<sub>g̃</sub>
  - arg  $\mu$  and tan eta
- RG evolution from  $M_{ew}$  to  $M_{Pl}$ : find universal soft terms  $a_0$ ,  $m_0$ ,  $m_{\tilde{g}}$  and D
- RG evolution back to  $M_{ew}$ : calculate  $|\mu|$  from electroweak symmetry breaking
- Repeat RG evolution:  $M_{ew} \rightarrow M_{\rm Pl} \rightarrow M_{ew}$ : find all particle masses and MSSM couplings
- adjust CP phase  $\xi$  to fit data (enters RGE via  $U_D$ ) and calculate observables

#### Universality of SUSY breaking

Assumption of the model:

SUSY is broken flavour blind at  $M_{\rm Pl} \Rightarrow$  Universality of soft- und trilinear terms. In this sense it is "minimal flavour violating".

$$\begin{split} \mathscr{L}_{\text{soft}} = & -\widetilde{16}_{i} \; m_{\widetilde{16}}^{2\,ij} \; \widetilde{16}_{j} - m_{\widetilde{10}_{H}}^{2} \; 10_{H}^{*} 10_{H} - m_{\widetilde{10}_{H}}^{2} \; 10_{H'}^{*} \; 10_{H'} \\ & - m_{\widetilde{16}_{H}}^{2} \; \widetilde{16}_{i} \; \overline{16}_{i} - m_{\widetilde{16}_{H}}^{2} \; 16_{H}^{*} 16_{H} - m_{\widetilde{45}_{H}}^{2} \; 45_{H}^{*} 45_{H} \\ & - \left( \frac{1}{2} \; \widetilde{16}_{i} \; A_{1}^{ij} \; \widetilde{16}_{j} \; 10_{H} + \frac{1}{2} \; \widetilde{16}_{i} \; A_{2}^{ij} \; \widetilde{16}_{j} \; \frac{45_{H} 10_{H'}}{M_{\text{Pl}}} + \frac{1}{2} \; \widetilde{16}_{i} \; A_{N}^{ij} \; \widetilde{16}_{j} \; \frac{\overline{16}_{H} \overline{16}_{H}}{M_{\text{Pl}}} + \text{h.c.} \right), \\ & m_{\widetilde{16}_{i}}^{2} = m_{0}^{2} \; 1 \; , \qquad m_{\widetilde{10}_{H}}^{2} = m_{\widetilde{10}_{H'}}^{2} = m_{\widetilde{45}_{H}}^{2} = m_{\widetilde{16}_{H}}^{2} = m_{\widetilde{16}_{H}}^{2} = m_{\widetilde{0}}^{2} \; , \\ & A_{1} = A_{0} \; Y_{1} \; , \qquad A_{2} = A_{0} \; Y_{2} \; , \qquad A_{N} = A_{0} \; Y_{N} \; , \end{split}$$

radiative corrections lead to a nonuniversal sfermion mass matrix at the GUT scale (diagonal in U-basis) [Hall, Kostelecky, Raby 86; Barbieri, Hall, Strumia95]

$$\begin{split} m_{\widetilde{16}_3}^2 &= m_0^2 - \Delta \\ m_{\widetilde{16}_1}^2 &\approx m_{\widetilde{16}_2}^2 &= m_0^2 + \delta \end{split}$$

Jennifer Girrbach TUM-IAS

・ロト ・得ト ・ヨト ・ヨト … ヨ

# $B_s - \overline{B}_s$ mixing

$$\mathsf{M}_{12,\,\mathsf{CMM}}^{s} = \frac{G_{F}^{2}M_{W}^{2}M_{B_{s}}}{12\pi^{2}}f_{B_{s}}^{2}\hat{B}_{B_{s}}\left(V_{ts}^{*}V_{tb}\right)^{2}\left(C_{L}(\mu_{b}) + C_{R}(\mu_{b})\right)$$

$$C = C_L + e^{-2i\xi} \left| C_R^{\text{CMM}} \right|$$
$$f_{B_s} \sqrt{\hat{B}_{B_s}} = (0.2580 \pm 0.0195) \text{ GeV}$$



<ロ> (四) (四) (三) (三) (三)

#### Jennifer Girrbach TUM-IAS

#### 30.06-04.07. 2012 FLASY12 Dortmund

э

#### Earlier Work

Barbieri et al 1995:

SO(10) model with small leptonic mixing

- Moroi JHEP 0003 (2000) 019; Phys. Lett. B 493 (2000) 366: SUSY SU(5) model with right-handed neutrinos, radiative effects due to atmospheric mixing angle
- Harnik et al 2011:

analysis of effective model with large  $\tilde{b}-\tilde{s}$  mixing, inspired by the CMM model

• Ciuchini et al 2004, 2007:

SUSY breaking parametrised in mass insertion approximation, SU(5) GUT relations imposed at  $M_{\rm GUT}$ 

(口) (同) (三) (三)