Novel Higgs signatures from S₃ **flavor symmetry**

Gautam Bhattacharyya

Saha Institute of Nuclear Physics, Kolkata

G.B., P. Leser, H. Päs, arXiv:1206.4202, and PRD 83, 011701(R) (2011)

Gautam Bhattacharyya, FLASY12, Dortmund, 2 July 2012

Introduction

- Permutation group S_3 has been used in the flavor context to address large/small mixing and mild/strong mass hierarchy.
- S₃ is the smallest nonabelian discrete symmetry that contains a <u>2-dim</u> rep. – we employ that to connect maximally mixed generation.

Enlarged Higgs sector: nonstandard couplings to fermions and gauge bosons

- 1. Two of the three neutral scalars have *almost* SM-Higgs-like couplings one at \sim 125 GeV and the other around 600 GeV.
- 2. One neutral scalar (h_a) has vanishing $h_a ZZ$ coupling. It has only flavor off-diagonal Yukawa couplings with one fermion from third generation. Similar things for one pseudo-scalar (χ_a).
- 3. Perhaps h_a or χ_a is buried in the existing data. We propose rare top decay events w/ several muons with tau tags to unveil them.

Extended Higgs sector

We assign the particles as
$$(2 \otimes 2 = 1 \oplus 1' \oplus 2 \text{ and } 1' \otimes 1' = 1)$$
:

$$(L_{\mu}, L_{\tau}) \in \mathbf{2}, \qquad L_{e}, e^{c}, \mu^{c} \in \mathbf{1}, \qquad \tau^{c} \in \mathbf{1}',$$

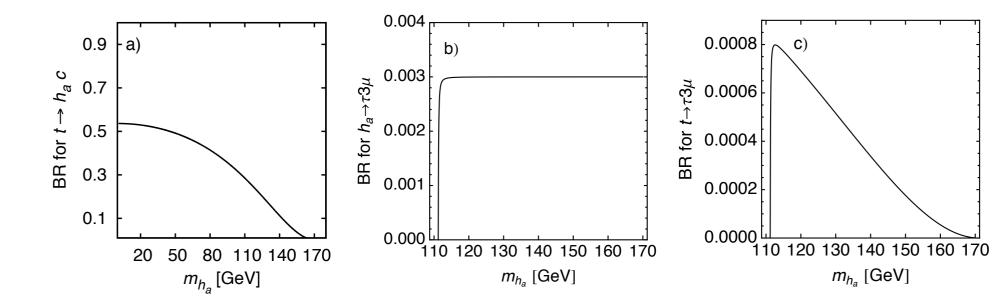
 $(Q_{2}, Q_{3}) \in \mathbf{2}, \qquad Q_{1}, u^{c}, c^{c}, d^{c}, s^{c} \in \mathbf{1}, \qquad b^{c}, t^{c} \in \mathbf{1}',$
 $(\phi_{1}, \phi_{2}) \in \mathbf{2}, \qquad \phi_{3} \in \mathbf{1}.$

The scalar potential looks like

$$V = m^{2} \left(\phi_{1}^{\dagger} \phi_{1} + \phi_{2}^{\dagger} \phi_{2} \right) + m_{3}^{2} \phi_{3}^{\dagger} \phi_{3} + \frac{\lambda_{1}}{2} \left(\phi_{1}^{\dagger} \phi_{1} + \phi_{2}^{\dagger} \phi_{2} \right)^{2} + \frac{\lambda_{2}}{2} \left(\phi_{1}^{\dagger} \phi_{1} - \phi_{2}^{\dagger} \phi_{2} \right)^{2} + \lambda_{3} \phi_{1}^{\dagger} \phi_{2} \phi_{2}^{\dagger} \phi_{1} + \frac{\lambda_{4}}{2} \left(\phi_{3}^{\dagger} \phi_{3} \right)^{2} + \lambda_{5} \left(\phi_{3}^{\dagger} \phi_{3} \right) \left(\phi_{1}^{\dagger} \phi_{1} + \phi_{2}^{\dagger} \phi_{2} \right) + \lambda_{6} \phi_{3}^{\dagger} \left(\phi_{1} \phi_{1}^{\dagger} + \phi_{2} \phi_{2}^{\dagger} \right) \phi_{3} + \left[\lambda_{7} \phi_{3}^{\dagger} \phi_{1} \phi_{3}^{\dagger} \phi_{2} + \lambda_{8} \phi_{3}^{\dagger} \left(\phi_{1} \phi_{2}^{\dagger} \phi_{1} + \phi_{2} \phi_{1}^{\dagger} \phi_{2} \right) + h.c. \right].$$

- Possible to arrange $v_1 = v_2$ as an extremal condition (maximal $\nu_{\mu} \nu_{\tau}$ mixing).
- Efficient check of global stability by going to spherical coordinates.

Spectrum and couplings


- Three CP-even neutral scalars (h_a, h_b, h_c) , two CP-odd neutral scalars (χ_a, χ_b) , and two sets of charged scalars (h_a^{\pm}, h_b^{\pm}) .
- Image has a straight of the second straig
- h_a and χ_a have no 3-point couplings with ZZ or WW. They can evade LEP2 and EWPT bounds hence, can be very light. Reason: Since $v_1 = v_2 = v$, the combination $(h_1 + h_2)$ couples to Z or W as proportional to v, while $h_a \sim (h_1 - h_2)$ decouples as orthogonal combination.
- All other neutral and charged scalars weigh above 550 GeV.

Generic Yukawa structures:

$$Y_a = \begin{pmatrix} 0 & 0 & Y_{13} \\ 0 & 0 & Y_{23} \\ Y_{31} & Y_{32} & 0 \end{pmatrix}, \quad Y_{b,c} = \begin{pmatrix} Y_{11} & Y_{12} & 0 \\ Y_{21} & Y_{22} & 0 \\ 0 & 0 & Y_{33} \end{pmatrix}.$$

How to detect $h_{\rm a} \ref{eq:ham}$

 $t\bar{t}$ pair in huge number. Look for rare top decays with several leptons in final state. $h_a \chi_a Z$ gauge interaction is crucial.

- Solution Assume ${m_h}_a \sim$ (110-120) GeV, and $m_{\chi_a} \sim$ 20 GeV.
- Br($t \rightarrow h_a c$) can be 25%, then Br($h_a \rightarrow \chi_a Z$) can be almost 100% due to the dominance of the gauge coupling, followed by $\chi_a \rightarrow \tau \mu$ (10%) and $Z \rightarrow \mu \mu$ (3%).

Outlook

- h_a or χ_a evades LEP/Tevatron/LHC bounds. They may be buried in the data. We are discussing it with some CMS experimentalists.
- Flavor symmetry often attributes unusual behavior to new scalars. For them conventional triggers won't work.
- We don't know which flavor symmetry is at work!
 Preparing a catalog for various exotic decay signatures arising from a wide range of possible flavor symmetry would be very handy for experimentalists.