Squark Flavor Implications from $B \to K^{(*)} l^+ l^-$

Stefan Schacht

FLASY 2012

Dortmund, 2/7/2012

in collaboration with Arnd Behring, Christian Gross and Gudrun Hiller arXiv:1205.1500

SM and SUSY Flavor Puzzle

SM Flavor Puzzle

• Origin of hierarchy of Yukawa couplings? $\lambda_{\text{Top}} \sim 1$, λ_b , ..., $\lambda_e \sim 10^{-2}$, ..., 10^{-6}

SUSY Flavor Problem

- SUSY says nothing about flavor violation in SUSY breaking
 - \Rightarrow SUSY flavor violation (FV) generically large
- FCNCs: partly drastic constraints on SUSY FV
 - \Rightarrow Non-generic structure necessary here \Rightarrow SUSY flavor problem

Flavor and CP Violation in SUSY

- Many new sources of FV in SUSY soft breaking terms
- Parallel rotation of squarks and quarks (super-CKM basis) $\Rightarrow 6 \times 6$ squark mass matrices in general not diagonal.
- In $\bar{B} \to \bar{K}^{(*)} l^+ l^-$: Most sensitive to $(\Delta^u_{23})_{LR}$

Parametrization of Flavor Violation and FCNC bounds

• Normalization of off-diagonal elements: Mass Insertion (MI) parameters

$$\delta_{ij} = \frac{\Delta_{ij}}{M_{av}^2}$$

• FCNC bounds on δ_{ij} parameter:

[Artuso et. al. 2008]

$\left \left(\delta_{12}^{d}\right)_{LL,RR}\right $	$ \left(\delta^d_{12}\right)_{LR} $	$ \left(\delta^{d}_{12} ight)_{RL} $
$1 \cdot 10^{-2}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
$\left \left(\delta_{12}^{u} ight)_{LL,RR} ight $	$ \left(\delta^{u}_{12} ight)_{LR} $	$ \left(\delta_{12}^u ight)_{RL} $
$3 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-3}$
$\left \left(\delta^{d}_{13}\right)_{LL,RR}\right $	$ \left(\delta^d_{13} ight)_{LR} $	$ \left(\delta^{d}_{13} ight)_{RL} $
$7 \cdot 10^{-2}$	$1 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
$ \left(\delta^{d}_{23} ight)_{LL} $	$ \left(\delta^d_{23} ight)_{RR} $	$ \left(\delta^{d}_{23} ight)_{LR,RL} $
$2 \cdot 10^{-1}$	$7 \cdot 10^{-1}$	$5 \cdot 10^{-3}$

- \Rightarrow SUSY flavor problem
- At present: bound for $(\delta^u_{23})_{LR} \sim \mathcal{O}(1)$

Low Energy Effective Field Theory

• $\Delta B = 1$ -Hamiltonian: $\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i(\mu) + h.c.$

Most important operators for semileptonic process $b \to sl^+l^ O_7 = \frac{e}{16\pi^2} m_b \left(\bar{s}_{L\alpha} \sigma_{\mu\nu} b_{R\alpha} \right) F^{\mu\nu}$ $O_9 = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_{\mu} P_L b \right) \left(\bar{l} \gamma^{\mu} l \right)$ $O_{10} = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_{\mu} P_L b \right) \left(\bar{l} \gamma^{\mu} \gamma_5 l \right)$

New Physics (NP) [1 loop MSSM: Cho, Misiak, Wyler, 1996, 2 loop SM: Bobeth, Misiak, Urban, 2000] • MSSM contributions to $C_i \Rightarrow C_i = C_i^{SM} + C_i^{NP}$ here: i = 7, 9, 10Stefan Schacht FLASY 2012 5 / 21

Comparison of SUSY Predictions with Data

- C_7 heavily constrained by $\bar{B} \to X_s \gamma$
- New theoretical and experimental results on $\bar{B} \to \bar{K}^{(*)}l^+l^-$ • New constraints on C_9 and C_{10} [Bobeth, Hiller, van Dyk, Wacker 2010, 2011]
- Higgs mass bounds, including NMFV with FeynHiggs [Heinemeyer, Hahn et. al.]

 $\begin{array}{ll} \mbox{Vary SUSY parameters at EW scale, allowing for flavor violation} \\ 300 \, {\rm GeV} \leq m_{H^{\pm}} \leq 1000 \, {\rm GeV} & 100 \, {\rm GeV} \leq M_2 \leq 1000 \, {\rm GeV} \\ 80 \, {\rm GeV} \leq |\mu| \leq 1000 \, {\rm GeV} & 3 \leq \tan\beta \leq 15 \\ m_{\tilde{q}} = 1000 \, {\rm GeV} & 170 \, {\rm GeV} \leq m_{\tilde{t}_R} \leq 800 \, {\rm GeV} \\ -3000 \, {\rm GeV} \leq A_t \leq 3000 \, {\rm GeV} & m_{\tilde{\nu}} = 100 \, {\rm GeV} \end{array}$

 Calculation with EOS: Tool for calculation of flavor observables http://project.het.physik.tu-dortmund.de/eos/

SUSY with Flavor Violation against Data

• Measure New Physics effect with:

$$\underline{R_i} \equiv \left| C_i^{\rm NP} / C_i^{\rm SM} \right|$$

BEFORE applying the semileptonic bounds • $R_9(\mu_b) \lesssim 4\%$ $R_{10}(\mu_b) \lesssim 47\%$ Large effect in C_{10}

AFTER applying the semileptonic bounds • $R_9(\mu_b)\lesssim 4\%$ $R_{10}(\mu_b)\lesssim 16\%$ at 68% C.L.

SUSY with Flavor Violation against Data

- Solutions for $C_7 > 0$ disfavored by zero of $A_{\rm FB}(\bar{B} \to K^* \mu^+ \mu^-)$
- Strong correlation between C₉ and C₁₀ due to Z penguin dominance in SUSY

$$\frac{C_{10}^{\rm SUSY}}{C_9^{\rm SUSY}} \simeq \frac{1}{4s_w^2 - 1}$$

Bounds stronger than model independent ones

Black: SUSY points

[Behring, Gross, Hiller, StS 2012]

• Gray: Data

[Bobeth,Hiller,van Dyk,Wacker 2011]

Stefan Schacht

MFV ranges: $R_9(\mu_b) \lesssim 3\%$, $R_{10}(\mu_b) \lesssim 11\%$.

Improvement of bound on $|(\delta_{23}^u)_{LR}|$

• Part of parameter space: significantly improved bound.

• Stronger than vacuum stability bounds at $m_{\tilde{q}} = m_{\tilde{l}} = 1$ TeV, $m_{\tilde{t}_R} = 300$ GeV: $(\delta^u_{23})_{LR} \lesssim 0.3$.

SUSY point: $m_{\tilde{\nu}} = 100 \text{ GeV}, m_{H^{\pm}} = 300 \text{ GeV}, \tan \beta = 4, M_2 = 150 \text{ GeV}, \mu = -300 \text{ GeV}, m_{\tilde{q}} = 1000 \text{ GeV}$

• Stronger bounds for $|\mu| \gg M_2$ Somewhat weaker bounds for larger $\tan \beta$

Implications for $\mathcal{B}(B_s \to \mu^+ \mu^-)$

• Current exp. upper limit at 95% (90%) C.L. [R. Aaij et al. (LHCb) 2012]

$$\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) < 4.5 \, (3.8) \times 10^{-9}$$

SM value

using lattice data for f_{B_s} (2011)

$$\begin{aligned} \mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) &= (3.1 \pm 0.6) \times 10^{-9} \quad f_{B_s} = 231(15)(4) \,\mathrm{MeV} \quad (\mathsf{HPQCD}) \\ \mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) &= (3.8 \pm 0.4) \times 10^{-9} \quad f_{B_s} = 256(6)(6) \,\mathrm{MeV} \quad (\mathsf{MILC}) \end{aligned}$$

assuming SM-like ΔM_s :

$$\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-)_{\rm SM} = (3.2 \pm 0.2) \times 10^{-9}$$

• Lower limit in the MSSM

no scalar/pseudoscalar contributions: $\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) \propto f_{B_s}^2 |C_{10}|^2$

$$\Rightarrow 1 \times 10^{-9} \lesssim \mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) < 5\,(6) \times 10^{-9}$$

Stefan Schacht

[Buras 2011]

Implications for Rare Top Decays

- Constraints on $(\delta^u_{23})_{LR} \Rightarrow$ upper bounds on $t \to c\gamma, g, Z$ in MSSM
- Contribution from squark gluino loops
- SM: GIM suppression \Rightarrow negligible contribution

Compare to requisite BRs for 5σ observations at LHC [Veloso 2008]

	ATLAS $10 \mathrm{fb}^{-1}$	ATLAS $100 \mathrm{fb}^{-1}$	our bound at 68%
$t \to c \gamma$	$9.4 imes 10^{-5}$	$3.0 imes 10^{-5}$	$\lesssim 2.1 imes 10^{-8}$
$t \to cg$	4.3×10^{-3}	1.4×10^{-3}	$\lesssim 7.2 imes 10^{-7}$
$t \to c Z$	4.4×10^{-4}	1.4×10^{-4}	$\lesssim 1.0 imes 10^{-7}$

- $m_{\tilde{g}} = 700~{\rm GeV}$ fixed, for $m_{\tilde{g}} > 700~{\rm GeV}$ \Rightarrow upper bound decreases
- Bounds also from squark, gluino and and Higgs mass constraints
- Too small to be observed within foreseeable future

Expectations for $(\delta_{23}^u)_{LR}$ in SUSY models

• Minimal Flavor Violation models: $A_u = A \left(a \mathbb{1} + b Y_d Y_d^{\dagger} \right) Y_u$

$$\Rightarrow (\delta_{23}^u)_{LR} \sim \lambda_b^2 V_{cb} V_{tb}^*(m_t/m_{\tilde{q}})$$

 \Rightarrow Suppression by λ_b^2 and V_{cb}

[D'Ambrosio, Giudice, Isidori, Strumia 2002, Hiller, Nir 2008]

Models with horizontal flavor symmetries

[Seiberg, Nir 1993]

 $(\delta_{23}^u)_{LR} \sim V_{cb}(m_t/m_{\tilde{q}})$

 \Rightarrow Order of magnitude below limits

Models with large predictions for $(\delta_{23}^u)_{LR}$?

Radiative Flavor Violation (RFV)

[Weinberg 1972, Borzumati, Farrar, Polonsky, Thomas, 1999, Crivellin, Nierste, 2009, Crivellin, Hofer, Nierste, Scherer, 2011]

- Tracing back the SM flavor puzzle to the SUSY flavor puzzle
- "Bare" Yukawa und CKM matrix

$$Y^{f(0)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y^f \end{pmatrix} \qquad V^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- But: Trilinear SUSY breaking couplings not diagonal
- ⇒ Quantum corrections induce hierarchy

[Feynman diagrams from Crivellin, Hofer, Nierste, Scherer, 2011, arXiv:1105.2818]

Stefan Schacht

FLASY 2012 14 / 21

Stefan Schacht

FLASY 2012 15 / 21

Improved Bounds on RFV

 $m_{\tilde{t}_R}$ [GeV]

- Interplay of constraints on allowed RFV parameter space
- Black: Bound from $b \rightarrow sl^+l^-$
- Green: Bound from ε_K through $(\delta_{23}^u)_{LR}^* (\delta_{13}^u)_{LR}$
- ▶ Spectrum of RFV with up-sector CKM generation must be ≥ 1 TeV

SUSY example point: $A_t=1000$ GeV, $m_{H^\pm}=300$ GeV, $\tan\beta=4,~M_2=800$ GeV, $\mu=-300$ GeV, $m_{\tilde{
u}}=100$ GeV

Stefan Schacht

FLASY 2012 16 / 21

Summary

- New theoretical and experimental results on $\bar{B} \to \bar{K}^* l^+ l^-$ in particular in the kinematic region of low recoil give new constraints on squark flavor violation from large chargino contributions to C_9 , C_{10} .
- Bounds as low as $(\delta_{23}^u)_{LR} \lesssim 0.1$, depending on parameter space.
- Lower limit $\mathcal{B}(\bar{B}_s \to \mu^+ \mu^-) \gtrsim 1 \times 10^{-9}$ (assumed no scalar operators).
- $t \rightarrow cV$, $V = \gamma, g, Z$ too rare to be observed in foreseeable future.
- Bounds on RFV models partly even sharper than from ε_K .
- Bounds stronger for lighter stops.
- Even more precise measurements to come in the future: LHCb roadmap channel $B \to K^{*0} l^+ l^-$.
 - Future prospects: More statistics and additional observables.

BACK-UP

Sensitivity on MI parameters

- $(\delta_{23}^d)_{LR}$: Already tightly constrained by bounds on C_7 from $\overline{B} \to X_s \gamma$ Contribution to C_9 , C_{10} only in double MI diagrams
- $(\delta_{23}^d)_{LL}$: effect in Z penguin suppressed by m_b^2/m_Z^2 compared to γ -penguin. No contribution to C_{10} , contribution to C_9 numerically small.
- $(\delta_{23}^u)_{LL}$ and $(\delta_{23}^u)_{LR}$: Contributions to $B_s \bar{B}_s$ mixing very small. Contribution from $(\delta_{23}^u)_{LL}$ to C_7 much larger than from $(\delta_{23}^u)_{LR}$. C_{10} order of magnitude more sensitive to $(\delta_{23}^u)_{LR}$.

Constraints on SUSY CPV in complex-valued $(\delta_{23}^u)_{LR}$

- Complex-valued $(\delta_{23}^u)_{LR}$ induces phase in C_{10}
- Relative phase $|\arg C_9 C_{10}^*| \sim \pi$ from $A_{FB} \left(\bar{B} \to \bar{K}^* l^+ l^- \right)$ at large q^2
- Little known about CPV phases of $C_{9,10}$

Observables sensitive to CPV in C_{10} :

- (Naive) T-odd CP asymmetry $\langle A_7^D \rangle$ at small q^2 (CP-even)
- CP asymmetry $\langle a^{(3)}_{CP} \rangle$ at low recoil (CP-odd)

Up and down sector CKM generation

SUSY example point: $A_t = 1000$ GeV, $m_{H^{\pm}} = 300$ GeV, $\tan \beta = 4$, $M_2 = 800$ GeV, $\mu = -300$ GeV, $m_{\tilde{\nu}} = 100$ GeV

Stefan Schacht

FLASY 2012 21 / 21