Flavored Gauge Mediation

YS, Szabo Abdullah, Galon, YS, Shirman

no supersymmetry at the LHC

- ? because it's simply not there
- ? because the spectrum is different from what we imagined
- one prevalent assumption:

Minimal Flavor Violation (MFV) suppresses flavor violating processes

but overkill

things to bear in mind (theory and exp):

we don't understand the SM Yukawa couplings

MFV is an implicit assumption in most SUSY searches

MFV is an implicit assumption in most SUSY searches --- example:

kinematic edges and flavor subtraction

Galon YS

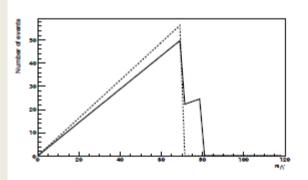


Fig. 1. The l^+l^- invariant mass distribution $(l = e, \mu)$ for degenerate sleptons (dashed) and for sleptons of different masses (solid).

use flavor-added distributions instead

- no supersymmetry at the LHC
- but Higgs seems to be there
- uncomfortably heavy for SUSY in particular for GMSB

[which doesn`t have A-terms]

e.g. Draper Meade Reece Shih

Gauge Mediated Supersymmetry Breaking

 beautiful, nothing swept under M_{Planck} carpet

(but see where following beauty led us with susy..)

- many variations considered recently (General Gauge Mediation)
- but: FLAVOR

but is GMSB automatically FLAVOR-blind ?

(depends on your definition of automatic..)

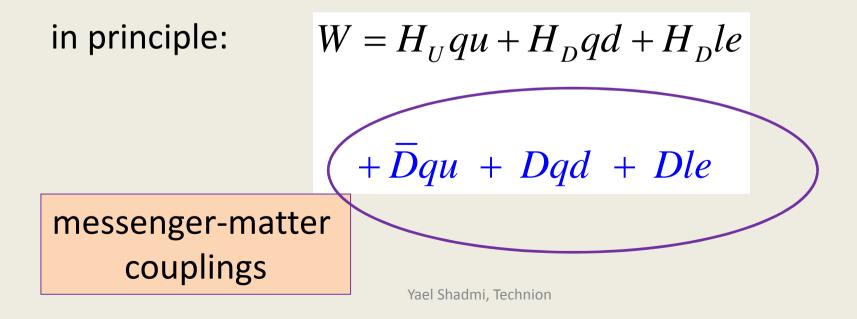
Minimal GMSB : messengers 5 + 5bar :
$$D + \overline{D}$$

 $H_D - H_U$

but is GMSB automatically FLAVOR-blind ?

minimal GMSB : messengers 5 + 5bar :
$$D + \overline{D}$$

 $H_D - H_U$


in principle:

$$W = H_U q u + H_D q d + H_D l e$$

+Dqu + Dqd + Dle

but is GMSB automatically FLAVOR-blind ?

Minimal GMSB : messengers 5 + 5bar :
$$D + \overline{D}$$

 $H_D - H_U$

 $W = Y_{II}H_{II}qu + Y_{D}H_{D}qd + Y_{L}H_{D}le$ $+\lambda_U \overline{D}qu + \lambda_D Dqd + \lambda_L Dle$ Chacko-Ponton (MFV) new **GENERATION** dependent contributions to soft masses from messenger loops

usually **forbid** messenger-matter couplings by **imposing** a discrete symmetry (messenger parity)

overkill:

- we are ignorant about Yukawas: we are at least as ignorant about the new couplings
- non-trivial Yukawas hint at some *flavor theory* same *flavor theory* would necessarily control the new couplings

simplest example: if H_D D

same properties under flavor theory

$$\longrightarrow$$
 $(\lambda_D)_{ij} \approx (Y_D)_{ij}$

nearly MFV: mass splittings similar to MFV

flavor constraints obeyed

simplest example: if H_D D

same properties under flavor theory

$$\longrightarrow$$
 $(\lambda_D)_{ij} \approx (Y_D)_{ij}$

nearly MFV: mass splittings similar to MFV

flavor constraints obeyed

[can still have interesting effects at LHC: mixings]

more generally: H_D D

have different properties under flavor theory

$$\longrightarrow$$
 $\lambda_D Y_D$ different matrices

but can sometimes be consistent with

flavor constraints

simple realization: flavor symmetries

flavor symmetry controls a. fermion masses b. messenger-matter couplings

can give rise to interesting squark spectra

interesting slepton spectra

want messengers to couple to susy-breaking but not the Higgses

in each messenger pair: either

$\lambda_U \overline{D} q u$ or $\lambda_D D q d$, $\lambda_L D l e$

if want both types of couplings: need more than one pair of messengers

sleptons

with U(1)xU(1) flavor symmetry

- suppose we want some new coupling to be large
- lepton Yukawas are small
- so need $(\lambda_D)_{ij} > (Y_D)_{ij}$
- recall:

 $W \supset Y_L H_D le + \lambda_L D le$

need: flavor charge of D smaller than flavor charge of Higgs

taking flavor spurion: negative charge

so: smaller charges \longrightarrow less suppression larger couplings

flavor charge of D smaller than flavor charge of Higgs

often: new couplings vanish for 3rd generation sleptons (holomorphic zeros)

since 3rd generation sleptons have smaller charges to have large Yukawa

- naturally have large effects in 1st and 2nd generation
- interesting spectra selectron mass splittings a few-10 GeV large selectron-smuon mixings

to conclude:

- no need to assume MFV to handle flavor constraints: flavor structure of supersymmetry may be richer than what we imagined
- matter-messenger couplings: viable models with interesting spectra