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Discrete symmetries

‣ Prominently and effectively used to explain masses 
and mixings of neutrinos, charged leptons and 
quarks.

‣ Can also be used to generate CP violation in a 
similar manner!

‣ Have looked at and symmetric 
Lagrangians to achieve that.
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CP violation from scalars

‣ Start with a CP-conserving Lagrangian.

‣ Break CP through VEVs of scalar fields that break 
the gauge symmetry spontaneously (SCPV).

‣ Geometrical CP violation (GCPV):

‣ CP phases emerge from symmetry structure of 
scalar sector rather than arbitrary parameters.

‣ Phases are calculable.
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GCPV from

‣ The groups  are non-Abelian subgroups of 
SU(3). ( ,  )

‣  

‣ Three generators:

‣ a, with a3 = 1, generating Z3.

‣ c, d, with cn = dn = 1 and cd = dc, generating Z3 ⨉ Z3.

‣ 2 triplets, 9 singlets.
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The scalar potential H=(H1, H2, H3) ∈ 301

H† ∈ 302

‣ Renormalizable potential invariant under :

‣ We parametrize VEVs as
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Minimization

‣ Minimizing the potential gives classes of VEVs:

‣ Also allowed: cyclic permutations or swapping of 
powers.

‣ (1, 1, ω2), (ω, 1, 1) etc.
6
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where repeated indices denote a sum, and we have omit-
ted the arbitrary parameters of each term except for the
single phase-dependent term that is inside the square
brackets. For the analysis of phase-dependence it is con-
venient to parametrise the VEVs with explicit phases:

hH1i = v1e
i'1 , hH2i = v2e

i'2 , hH3i = v3e
i'3 , (2)

and in particular we refer to the phase combinations dis-
played in Vren:

✓i ⌘ �2'i + 'j + 'k , (3)

where we have assumed i 6= j 6= k.
The VEVs obtained from minimising Vren were pre-

sented in [15] and confirmed in [17]. Depending on the
sign of c✓, we obtain one of two classes:

hHi = vp
3
(1,!,!2) , (4a)

hHi = vp
3
(!2, 1, 1) , (4b)

with the calculable phase ! ⌘ e2⇡i/3. Within each class
it is possible to obtain equivalent VEVs by taking cyclic
permutations of the components (e.g. (1, 1,!2)) or by
swapping the powers of ! (e.g. (!, 1, 1)).

The number of terms present in the non-renormalisable
potential V up to a given order increases steeply with
the order considered. In order to analyse the potential
we rely on the fundamental properties of the symmetries
and classify the large number of terms into a manage-
able number of categories. One important consideration
is whether the equality of the magnitude of three com-
ponents of eq. (4a, 4b) is perturbed by any higher order
terms, i.e. if v1 = v2 = v3 can be maintained. In order to
address this, we note that this property of the VEVs is
fundamentally connected to the underlying C3 cyclic per-
mutation generator contained in both symmetries consid-
ered. In this symmetry basis for the scalars, this gener-
ator forces any invariant term to be a cyclically permut-
ing (c.p.) combination of the 3 scalar doublets. Start-
ing with the phase-independent combinations, we observe
that they appear only in 3 di↵erent types. The distin-
guishing property of these types is how many of the three
components of the triplet are included in a single part of
the combination. Specifically we have either vn1 +vn2 +vn3 ,
vm1 vn2 +vm2 vn3 +vm3 vn1 or vl1v

m
2 vn3 +vl2v

m
3 vn1 +vl3v

m
1 vn2 , and

each of those types of combination has individual pref-
erences for the VEVs. At renormalisable level the first
two types are present: (H1H†

1)
2 + (H2H†

2)
2 + (H3H†

3)
2

and (H1H†
1)(H

2H†
2) + c.p.. The last type first appears

at order 6: (H1H†
1)(H

2H†
2)(H

3H†
3). Table I summarises

the type of VEVs that each phase-independent combi-
nation type favours, depending on the coe�cient of that
combination being positive or negative.

Although a specific invariant can include more than
one type of combination, the potential can be written
in terms of all the allowed invariants being assigned a

+ -

vni (1, 1, 1) (0, 0, 1)

vmi vnj (0, 0, 1) (0, 1, 1)

vl1v
m
2 vn3 (0, 0, 1)/(0, 1, 1) (1, 1, 1)

TABLE I. Types of combinations and preferred VEVs accord-
ing to the sign of their coe�cient.

natural O(1) coe�cient and the appropriate mass scale
suppressions for the non-renormalisable terms. It is then
always possible to rewrite it in terms of the distinct cyclic
combinations, and multiplying each unique cyclic com-
bination there is a combined coe�cient that is a linear
combination involving the O(1) coe�cients of all the in-
variants that contain that cyclic combination and some
group theoretical factors.
In order to obtain a (0, 0, 1) or a (1, 1, 1) VEV, ulti-

mately the requirement turns out to be that the com-
bined importance of terms favouring one or the other
VEV is stronger. This holds even when there is a large
number of terms favouring each type of VEV. At arbitrar-
ily high orders in the scalar potential V , the symmetry
generically predicts either a (0, 0, 1) or (1, 1, 1) type of
VEV due to its underlying cyclic structure. There are
exceptions to this generic prediction, related with the
appearance of a (0, 1, 1) VEV or a VEV with the hybrid
form (x, y, y) with the ratio x/y depending on the values
of the combined coe�cients, but we have observed that
to obtain those fine-tuning of the coe�cients is required.
The reason is that at each order, the vni type is naturally
dominating (and this e↵ect increases with the order). On
the other hand, there are also more combinations of the
other types, particularly the vl1v

m
2 vn3 type which appears

most frequently in invariants. Therefore in a typical situ-
ation, with similarly valued coe�cients for all invariants,
the sign of the combined coe�cients of vni and vl1v

m
2 vn3

determines the VEV, with the vmi vnj terms not a↵ecting
things unless one enhances their contributions - which
would be the fine-tuning we referred to previously. So to
obtain either (0, 0, 1) or (1, 1, 1) VEVs is quite natural
and there are huge regions of parameter space that lead
to them.

To better illustrate this we have parametrised a VEV
of constant unit magnitude, v1 = sin(↵ · ⇡) cos(� · ⇡),
v2 = sin(↵·⇡) sin(� ·⇡), v3 = cos(↵·⇡). In this parametri-
sation, the (1, 1, 1) direction corresponds to � = 1/4 and
↵ ' 0.30 (strictly, cos(↵ · ⇡) = 1/

p
3). Due to the pe-

riodicity we focus on the region between zero and 1/2
for ↵ and �. In the case in Figure 1, the vni (positive
coe�cient) and vl1v

m
2 vn3 (negative coe�cient) terms work

together to easily produce a (1, 1, 1) VEV. In the case
in Figure 2, vni (positive coe�cient) overpowers vl1v

m
2 vn3

(positive coe�cient) to produce a (1, 1, 1) VEV, even
though the coe�cient of the vni is only 2/7 of the co-
e�cient of vl1v

m
2 vn3 . The e↵ect of the terms vmi vnj terms

only becomes relevant if their coe�cients are significantly

Phases due to discrete symmetry → geometrical
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Stability of the solutions

‣ For improved fermion mass structures, higher order 
terms might be needed in the Lagrangian.

‣ Thus, higher order terms cannot be avoided in the 
scalar potential.

‣ Do the solutions including the calculable phases 
hold at higher orders?
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Stability of the solutions

‣ There are three types of phase independent terms 
in the invariants that favor different VEVs:

‣ Potential can be sorted in terms of these 
expressions.
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(H1H†
1)(H

2H†
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‣ Use multiplication rules to expand 
these expressions.

‣ Filter for invariants.

‣ Sort them in a useful way!

‣ Great simplification:

‣ Order 6: 110 → 34 

‣ Order 8: 1066 → 75

9

(H301 ⊗ H301) ⊗ (H302 ⊗ H302), 
(H301 ⊗ H302) ⊗ (H301 ⊗ H302), 
(H301 ⊗ H302) ⊗ (H302 ⊗ H301)
   

((H301 ⊗ (H301 ⊗ H301)) ⊗ H302 ⊗ H302 ⊗ H302),
(((H301 ⊗ H301) ⊗ H302) ⊗ H301 ⊗ H302 ⊗ H302),
(H301 ⊗ H302 ⊗ H301 ⊗ H301 ⊗ H302 ⊗ H302),
(H302 ⊗ H301 ⊗ H301 ⊗ H301 ⊗ H302 ⊗ H302),
(((H302 ⊗ (H301 ⊗ H301)) ⊗ H302) ⊗ H301 ⊗ H302),
((H302 ⊗ H301) ⊗ (H302 ⊗ H301) ⊗ H301 ⊗ H302),
(H302 ⊗ H302 ⊗ H301 ⊗ H301 ⊗ (H301 ⊗ H302)),
(((H302 ⊗ H302) ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ H301)),
(H302 ⊗ H301 ⊗ H302 ⊗ H301 ⊗ H302 ⊗ H301),
(H302 ⊗ H301 ⊗ H301 ⊗ H302 ⊗ H302 ⊗ H301)

((H301 ⊗ H301) ⊗ (H301 ⊗ H301)) ⊗ ((H302 ⊗ H302) ⊗ (H302 ⊗ H302)), 
 (H301 ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ (H302 ⊗ H302)), 
 (H301 ⊗ (H301 ⊗ H301)) ⊗ ((H302 ⊗ H302) ⊗ (H301 ⊗ (H302 ⊗ H302))), 
 (H301 ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ (H302 ⊗ H302)) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ (H302 ⊗ H302)) ⊗ (H302 ⊗ H301), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ (H302 ⊗ H302)), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H301) ⊗ (H302 ⊗ (H301 ⊗ (H302 ⊗ H302))), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ (H301 ⊗ (H302 ⊗ H302))) ⊗ (H301 ⊗ H302), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ (H301 ⊗ (H302 ⊗ H302))) ⊗ (H302 ⊗ H301), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H302) ⊗ (H301 ⊗ (H301 ⊗ (H302 ⊗ H302))), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H301 ⊗ H302), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H302 ⊗ H301), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H301 ⊗ H302), 
 ((H301 ⊗ H301) ⊗ (H302 ⊗ H302)) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ H301), 
 (((H301 ⊗ H301) ⊗ H302) ⊗ H302) ⊗ (H302 ⊗ (H302 ⊗ (H301 ⊗ H301))), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ (H302 ⊗ H302)), 
 (H301 ⊗ H302) ⊗ (((((H301 ⊗ H301) ⊗ H302) ⊗ H301) ⊗ H302) ⊗ H302), 
 (H301 ⊗ H302) ⊗ ((H301 ⊗ H301) ⊗ (H302 ⊗ H302)) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ ((H301 ⊗ H301) ⊗ (H302 ⊗ H302)) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ ((H301 ⊗ H301) ⊗ (H302 ⊗ H302)), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ (H301 ⊗ H302) ⊗ ((H302 ⊗ H302) ⊗ (H301 ⊗ H301)), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ ((H301 ⊗ H301) ⊗ (H302 ⊗ H302)), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H301 ⊗ H302) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H301 ⊗ H302) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ H301) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ H301) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ (H302 ⊗ H301) ⊗ ((H302 ⊗ H302) ⊗ (H301 ⊗ H301)), 
 (H301 ⊗ H302) ⊗ ((H302 ⊗ H302) ⊗ (H301 ⊗ H301)) ⊗ (H301 ⊗ H302), 
 (H301 ⊗ H302) ⊗ ((H302 ⊗ H302) ⊗ (H301 ⊗ H301)) ⊗ (H302 ⊗ H301), 
 (H301 ⊗ H302) ⊗ ((H302 ⊗ H302) ⊗ H301) ⊗ (H302 ⊗ (H301 ⊗ H301)), 
 (H301 ⊗ H302) ⊗ ((H302 ⊗ H302) ⊗ H302) ⊗ (H301 ⊗ (H301 ⊗ H301))
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Stability of the solutions

‣ (1, 1, 1) and (0, 0, 1) appear naturally due to the 
dominance of  .

‣ Other VEVs need fine-tuning of the parameters.
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where repeated indices denote a sum, and we have omit-
ted the arbitrary parameters of each term except for the
single phase-dependent term that is inside the square
brackets. For the analysis of phase-dependence it is con-
venient to parametrise the VEVs with explicit phases:

hH1i = v1e
i'1 , hH2i = v2e

i'2 , hH3i = v3e
i'3 , (2)

and in particular we refer to the phase combinations dis-
played in Vren:

✓i ⌘ �2'i + 'j + 'k , (3)

where we have assumed i 6= j 6= k.
The VEVs obtained from minimising Vren were pre-

sented in [15] and confirmed in [17]. Depending on the
sign of c✓, we obtain one of two classes:

hHi = vp
3
(1,!,!2) , (4a)

hHi = vp
3
(!2, 1, 1) , (4b)

with the calculable phase ! ⌘ e2⇡i/3. Within each class
it is possible to obtain equivalent VEVs by taking cyclic
permutations of the components (e.g. (1, 1,!2)) or by
swapping the powers of ! (e.g. (!, 1, 1)).

The number of terms present in the non-renormalisable
potential V up to a given order increases steeply with
the order considered. In order to analyse the potential
we rely on the fundamental properties of the symmetries
and classify the large number of terms into a manage-
able number of categories. One important consideration
is whether the equality of the magnitude of three com-
ponents of eq. (4a, 4b) is perturbed by any higher order
terms, i.e. if v1 = v2 = v3 can be maintained. In order to
address this, we note that this property of the VEVs is
fundamentally connected to the underlying C3 cyclic per-
mutation generator contained in both symmetries consid-
ered. In this symmetry basis for the scalars, this gener-
ator forces any invariant term to be a cyclically permut-
ing (c.p.) combination of the 3 scalar doublets. Start-
ing with the phase-independent combinations, we observe
that they appear only in 3 di↵erent types. The distin-
guishing property of these types is how many of the three
components of the triplet are included in a single part of
the combination. Specifically we have either vn1 +vn2 +vn3 ,
vm1 vn2 +vm2 vn3 +vm3 vn1 or vl1v

m
2 vn3 +vl2v

m
3 vn1 +vl3v

m
1 vn2 , and

each of those types of combination has individual pref-
erences for the VEVs. At renormalisable level the first
two types are present: (H1H†

1)
2 + (H2H†

2)
2 + (H3H†

3)
2

and (H1H†
1)(H

2H†
2) + c.p.. The last type first appears

at order 6: (H1H†
1)(H

2H†
2)(H

3H†
3). Table I summarises

the type of VEVs that each phase-independent combi-
nation type favours, depending on the coe�cient of that
combination being positive or negative.

Although a specific invariant can include more than
one type of combination, the potential can be written
in terms of all the allowed invariants being assigned a

+ -

vni (1, 1, 1) (0, 0, 1)

vmi vnj (0, 0, 1) (0, 1, 1)

vl1v
m
2 vn3 (0, 0, 1)/(0, 1, 1) (1, 1, 1)

TABLE I. Types of combinations and preferred VEVs accord-
ing to the sign of their coe�cient.

natural O(1) coe�cient and the appropriate mass scale
suppressions for the non-renormalisable terms. It is then
always possible to rewrite it in terms of the distinct cyclic
combinations, and multiplying each unique cyclic com-
bination there is a combined coe�cient that is a linear
combination involving the O(1) coe�cients of all the in-
variants that contain that cyclic combination and some
group theoretical factors.
In order to obtain a (0, 0, 1) or a (1, 1, 1) VEV, ulti-

mately the requirement turns out to be that the com-
bined importance of terms favouring one or the other
VEV is stronger. This holds even when there is a large
number of terms favouring each type of VEV. At arbitrar-
ily high orders in the scalar potential V , the symmetry
generically predicts either a (0, 0, 1) or (1, 1, 1) type of
VEV due to its underlying cyclic structure. There are
exceptions to this generic prediction, related with the
appearance of a (0, 1, 1) VEV or a VEV with the hybrid
form (x, y, y) with the ratio x/y depending on the values
of the combined coe�cients, but we have observed that
to obtain those fine-tuning of the coe�cients is required.
The reason is that at each order, the vni type is naturally
dominating (and this e↵ect increases with the order). On
the other hand, there are also more combinations of the
other types, particularly the vl1v

m
2 vn3 type which appears

most frequently in invariants. Therefore in a typical situ-
ation, with similarly valued coe�cients for all invariants,
the sign of the combined coe�cients of vni and vl1v

m
2 vn3

determines the VEV, with the vmi vnj terms not a↵ecting
things unless one enhances their contributions - which
would be the fine-tuning we referred to previously. So to
obtain either (0, 0, 1) or (1, 1, 1) VEVs is quite natural
and there are huge regions of parameter space that lead
to them.

To better illustrate this we have parametrised a VEV
of constant unit magnitude, v1 = sin(↵ · ⇡) cos(� · ⇡),
v2 = sin(↵·⇡) sin(� ·⇡), v3 = cos(↵·⇡). In this parametri-
sation, the (1, 1, 1) direction corresponds to � = 1/4 and
↵ ' 0.30 (strictly, cos(↵ · ⇡) = 1/

p
3). Due to the pe-

riodicity we focus on the region between zero and 1/2
for ↵ and �. In the case in Figure 1, the vni (positive
coe�cient) and vl1v

m
2 vn3 (negative coe�cient) terms work

together to easily produce a (1, 1, 1) VEV. In the case
in Figure 2, vni (positive coe�cient) overpowers vl1v

m
2 vn3

(positive coe�cient) to produce a (1, 1, 1) VEV, even
though the coe�cient of the vni is only 2/7 of the co-
e�cient of vl1v

m
2 vn3 . The e↵ect of the terms vmi vnj terms

only becomes relevant if their coe�cients are significantly

sign of corresponding
coefficient

�n�



Philipp Leser | FLASY12, Dortmund

‣  (+) and  (–) 
work together to easily 
produce (1, 1, 1).

‣  (+) overpowers 
  (+), even 
though   coefficient is 
numerically much 
smaller.

‣ Reverse sign to get
(0, 0, 1).

11

3

FIG. 1. (1, 1, 1) arises from cooperating terms.

FIG. 2. (1, 1, 1) arises from dominant term.

enhanced. The plots shown were created for order 6, but
they are representative what happens at higher orders.
Note that in both cases reversing the signs of all the co-
e�cients would invert the plot and would lead to the
(0, 0, 1) type of VEVs as expected.

We consider now the new phase dependences possible
at higher orders. We once again exploit the fundamen-
tal properties of the symmetries in order to classify the
large number of terms. The remaining generators shared
by �(27) and �(54) are also C3 factors and are funda-
mentally connected to the allowed phase-dependent in-
variants. In [17] one such phase-dependence was iden-
tified: doubling the powers of the renormalisable (order
4) phase-dependent invariant produces another invariant
with a distinct phase-dependence

X

i 6=j 6=k

(Hi)4(H†
jH

†
k)

2 . (5)

In fact this happens with any integer multiple, at a given

high order new dependences ✓n are enabled

✓ni ⌘ �2n'i + n'j + n'k , i 6= j 6= k . (6)

At order 6, a distinct possibility arises:

⌘i ⌘ 3'i � 3'j + 0'k , i 6= j 6= k . (7)

It can also be generalised to integer multiples that appear
at higher orders:

⌘ni ⌘ 3n'i � 3n'j + 0'k , i 6= j 6= k . (8)

Because of the link between the allowed phase-
dependences and the generators of the groups, we can
conclude that these are all the possibilities. This can
be explicitly verified by computing all possible invari-
ant products of the scalar triplet with its conjugates,
and sorting out the phase-dependences. Beyond order
12 we found the number of invariants too large for this
procedure to be e↵ective, but it remains simple to ver-
ify certain properties about the ✓n combination and the
⌘n combinations: they first appear through the respec-
tive powers of the lowest order terms with the ✓ and
⌘ dependences, so for example ✓3 and ⌘2 appear at
order 12 respectively from

P
i 6=j 6=k(H

i)8(H†
jH

†
k)

4 and
P

i 6=j(H
i)6(H†

j )
6. As with the phase-independent terms

discussed already, distinct invariants may include more
than one type of phase-dependence, but we can rewrite
the potential V in terms of the unique combinations. The
e↵ective combined coe�cient of each combination is a
weighted sum of the O(1) coe�cients of the invariants
containing it, with group theoretical factors and the ap-
propriate number of mass scale suppressions for the non-
renormalisable invariants. As an illustration of this, in
�(27) the product (H ⌦H†)⌦ (H ⌦H† ⌦H† ⌦H) con-
tains an invariant ((H1H†

3)
3+c.p.)+3((H1H†

3)
2(H2H†

1)+

c.p.) + 3((H1H†
3)

2(H3H†
2) + c.p.) + 6H1H2H3H†

1H
†
2H

†
3 .

With a (0, 0, 1) VEV the phase-dependence is lost,
so from here on we consider only the (1, 1, 1) class of
VEVs. The phase-dependent combinations also pre-
serve the (1, 1, 1) VEVs naturally (as a direct conse-
quence of the non-diagonal cyclic generator). We can
now take di↵erent combinations that share the same
phase-dependence and further reduce the number of in-
dependent combined coe�cients: we only need a single
one for each unique phase-dependence. A demonstra-
tion of this is possible at order 6, where one can obtain
the ✓i phase dependence that appears first at order 4
in two distinct ways: by combining the ✓1 portion of
the invariant with a matched additional H1H†

1 to obtain

[(H1)2H†
2H

†
3(H

1H†
1) + c.p.] + h.c. or by combining the

✓1 portion of the invariant with either unmatched H2H†
2

/ H3H†
3 , to obtain [(H1)2H†

2H
†
3(H

2,3H†
2,3) + c.p.] + h.c..

Given a (1, 1, 1) type of VEV, any HiH†
i = v2/3 so they

all become equivalent. They are also equivalent to the al-
ready existing order 4 term with the same ✓i dependence
and we can absorb their e↵ect into a suitable redefinition

(1, 1, 1)

3

FIG. 1. (1, 1, 1) arises from cooperating terms.

FIG. 2. (1, 1, 1) arises from dominant term.

enhanced. The plots shown were created for order 6, but
they are representative what happens at higher orders.
Note that in both cases reversing the signs of all the co-
e�cients would invert the plot and would lead to the
(0, 0, 1) type of VEVs as expected.

We consider now the new phase dependences possible
at higher orders. We once again exploit the fundamen-
tal properties of the symmetries in order to classify the
large number of terms. The remaining generators shared
by �(27) and �(54) are also C3 factors and are funda-
mentally connected to the allowed phase-dependent in-
variants. In [17] one such phase-dependence was iden-
tified: doubling the powers of the renormalisable (order
4) phase-dependent invariant produces another invariant
with a distinct phase-dependence

X

i 6=j 6=k

(Hi)4(H†
jH

†
k)

2 . (5)

In fact this happens with any integer multiple, at a given

high order new dependences ✓n are enabled

✓ni ⌘ �2n'i + n'j + n'k , i 6= j 6= k . (6)

At order 6, a distinct possibility arises:

⌘i ⌘ 3'i � 3'j + 0'k , i 6= j 6= k . (7)

It can also be generalised to integer multiples that appear
at higher orders:

⌘ni ⌘ 3n'i � 3n'j + 0'k , i 6= j 6= k . (8)

Because of the link between the allowed phase-
dependences and the generators of the groups, we can
conclude that these are all the possibilities. This can
be explicitly verified by computing all possible invari-
ant products of the scalar triplet with its conjugates,
and sorting out the phase-dependences. Beyond order
12 we found the number of invariants too large for this
procedure to be e↵ective, but it remains simple to ver-
ify certain properties about the ✓n combination and the
⌘n combinations: they first appear through the respec-
tive powers of the lowest order terms with the ✓ and
⌘ dependences, so for example ✓3 and ⌘2 appear at
order 12 respectively from

P
i 6=j 6=k(H

i)8(H†
jH

†
k)

4 and
P

i 6=j(H
i)6(H†

j )
6. As with the phase-independent terms

discussed already, distinct invariants may include more
than one type of phase-dependence, but we can rewrite
the potential V in terms of the unique combinations. The
e↵ective combined coe�cient of each combination is a
weighted sum of the O(1) coe�cients of the invariants
containing it, with group theoretical factors and the ap-
propriate number of mass scale suppressions for the non-
renormalisable invariants. As an illustration of this, in
�(27) the product (H ⌦H†)⌦ (H ⌦H† ⌦H† ⌦H) con-
tains an invariant ((H1H†

3)
3+c.p.)+3((H1H†

3)
2(H2H†

1)+

c.p.) + 3((H1H†
3)

2(H3H†
2) + c.p.) + 6H1H2H3H†

1H
†
2H

†
3 .

With a (0, 0, 1) VEV the phase-dependence is lost,
so from here on we consider only the (1, 1, 1) class of
VEVs. The phase-dependent combinations also pre-
serve the (1, 1, 1) VEVs naturally (as a direct conse-
quence of the non-diagonal cyclic generator). We can
now take di↵erent combinations that share the same
phase-dependence and further reduce the number of in-
dependent combined coe�cients: we only need a single
one for each unique phase-dependence. A demonstra-
tion of this is possible at order 6, where one can obtain
the ✓i phase dependence that appears first at order 4
in two distinct ways: by combining the ✓1 portion of
the invariant with a matched additional H1H†

1 to obtain

[(H1)2H†
2H

†
3(H

1H†
1) + c.p.] + h.c. or by combining the

✓1 portion of the invariant with either unmatched H2H†
2

/ H3H†
3 , to obtain [(H1)2H†

2H
†
3(H

2,3H†
2,3) + c.p.] + h.c..

Given a (1, 1, 1) type of VEV, any HiH†
i = v2/3 so they

all become equivalent. They are also equivalent to the al-
ready existing order 4 term with the same ✓i dependence
and we can absorb their e↵ect into a suitable redefinition

(1, 1, 1)

order 6

�n� ��1�
m
2 �

n
3

�n�
��1�

m
2 �

n
3
�n�

�1 = sin� cos�
�2 = sin� sin�
�3 = cos�
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Phase dependent terms

‣ At renormalizable order one phase combination:

‣ At higher orders, additional patterns arise:

‣ If one is willing to choose appropriate signs,
VEVs with calculable phases can be preserved to 
arbitrarily high order.

12

�n� ⌘ �2n�� + n�j + n�k
�n� ⌘ 3n�� � 3n�j + 0�k

�� ⌘ �2�� + �j + �k (+) favors (ω, 1, 1) 
(–) favors (1, ω, ω2)

(+) favors (ω, 1, 1) 
(–) favors (1, ω, ω2)

no preference } suppressed by 
higher scale
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Conclusion
‣  and  can lead to a scalar sector with VEVs that 

have geometrical phases determined by the symmetry.

‣ We have classified the possible invariants and reordered them 
in a way that greatly reduces the number of relevant 
parameters.

‣ All terms appearing at higher orders can be classified into 
groups according to their effect on the VEVs.

‣ The geometrical phases can be naturally preserved to 
arbitrarily high order.
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�(54)�(27)
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Group generators
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d =

0
B@
��k�� 0 0
0 �� 0
0 0 �k

1
CA

c =

0
B@
�� 0 0
0 �k 0
0 0 ��k��

1
CA

� =

0
B@
0 1 0
0 0 1
1 0 0

1
CA � ⌘ e2�i/n � = �r

c = d = �s

2 triplets 9 singlets
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(1, ω, ω2) is not CP-violating

‣ If the VEV is self-conjugate, it does not violate CP:

‣ Moreover, consider this transformation:

‣ If U is a symmetry of the Lagrangian, the VEV is not 
CP-violating either. This applies to (1, ω, ω2), 
because U is one of the generators.

‣ The VEV (1, 1, ω) does not have this problem.
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