Relating neutrino mixing angles to neutrino masses

FLASY12

June 30, 2012, Dortmund

Morimitsu Tanimoto (Niigata University) with Y. Shimizu and A. Watanabe

Plan of my talk

1 Introduction Tri-bimaximal mixing Paradigm

- **2** Breaking with Tri-bimaximal mixing
- **3** Large θ_{13} and the neutrino masses
- **4** Summary

1 Introduction Tri-bimaximal mixing Paradigm

Before Daya Bay, RENO, DChooz and T2K, Neutrino Data suggested Tri-bimaximal Mixing of Neutrinos

$$\sin^2 heta_{12}=1/3$$
, $\sin^2 heta_{23}=1/2$, $\sin^2 heta_{13}=0$,

$$U_{\rm tri-bimaximal} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0\\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2}\\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

Tri-bi maximal mixing gives us beautiful flavor structure of Neutrino Mass Matrix:

$$M_{\nu}^{\exp} \simeq V_{\text{tri-bi}}^{*} \begin{pmatrix} m_{1} & & \\ & m_{2} & \\ & & m_{3} \end{pmatrix} V_{\text{tri-bi}}^{\dagger}$$
$$= \underbrace{\frac{m_{1} + m_{3}}{2} \begin{pmatrix} 1 & & \\ & & 1 \end{pmatrix}}_{2} + \frac{m_{2} - m_{1}}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}}_{2} + \frac{m_{1} - m_{3}}{2} \begin{pmatrix} 1 & & 1 \\ & & 1 \end{pmatrix}}$$

integer (inter-family related) matrix elements

 → non-abelian discrete flavor sym

Mixing angles are independent of mass eigenvalues

$$M_{\nu}^{\exp} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & 1 \end{pmatrix}$$

The third matrix is A₄ symmetric !

The first and second matrices are well known to be of S₃ symmetric.

In order to get the first and second matrix in A₄ model, non-trivial flavons are required.

E. Ma and G. Rajasekaran, PRD64(2001)113012 **A**₄ Flavor Group Four irreducible representations in A_4 symmetry 1 1' 1" 3 Consider A₄ triplet of leptons 3 (l_e , l_{μ} , l_{τ})_L Tensor Product of **3** (a_1, a_2, a_3) and **3** (b_1, b_2, b_3) $\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2$ $\begin{array}{ccc} l \ l \ h \ h / \Lambda & (3 \times 3 \times 1 \times 1) & \text{gives} \\ (l_{e} \ l_{e} + l_{\mu} l_{\tau} + l_{\mu} l_{\tau}) \ v^{2} / \Lambda \end{array} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ netric

In order to get Tri-bimaximal Mixing, one needs

◎ Non-trivial Flavons 3

◎ Additional U(1) or Zn

⊙ VEV Alignment of flavon 3: (1,0,0) , (1,1,1)

Typical Non-Abelian Discrete Groups

S₃ **S**₄ **A**₄ **T' D**₄ Δ (27) Δ (54)

Singlet11'1'....O: includes both 2 and 3Doublet2....2 familiesTriplets3....3 families

Remark: S_3 and A_4 are sub-groups of S_4 .

H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1-163. [arXiv:1003.3552 [hep-th]].

Text book to be published at Springer for Physicist (2012)

Remark:

 Tri-bimaximal Mixing
 realized in

$$M_{\text{TBM}} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Additional Matrices break Tri-bimaximal mixing

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which could appear in A_4 , S_4 , $\Delta(27)$ flavor symmetries.

3 Breaking with tri-bimaximal mixing

Daya Bay suggests us

the breaking with tri-bimaximal paradigm !

Let us show how to go beyond the tri-bi maximal mixing.

Consider Modified A_4 Model to get large θ_{13}

Modify G. Altarelli, F. Feruglio, Nucl. Phys. B720 (2005) 64

	(l_e, l_μ, l_τ)	e^{c}	μ^{c}	τ^c	$h_{u,d}$	ϕ_l	$\phi_{m{ u}}$	ξ	<i>E</i> '
SU(2)	2	1	1	1	2	1	1	1	1
A_4	3	1	1''	1'	1	3	3	1	(1')
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	ω

 $\begin{aligned}
\mathbf{3} \times \mathbf{3} &= \mathbf{3} + \mathbf{3} + \mathbf{1} + \mathbf{1'} + \mathbf{1''} \\
\mathbf{3} \times \mathbf{3} &\Rightarrow \mathbf{1} &= a_1 * b_1 + a_2 * b_3 + a_3 * b_2 \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1'} &= a_1 * b_2 + a_2 * b_1 + a_3 * b_3 \\
\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1''} &= a_1 * b_3 + a_2 * b_2 + a_3 * b_1 \\
\underbrace{\xi} & & & & & & & & \\ \mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1} & & & & & & & \\ \mathbf{1} \times \mathbf{1} \Rightarrow \mathbf{1} & & & & & & & \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} & & & & & & \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} & & & & & \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} & & & & \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} & & & \\ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\end{aligned}$

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

Additional Matrix

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \qquad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \qquad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \qquad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda}$$

There is one relation a = -3b

$$m_1 = a + \sqrt{c^2 + d^2 - cd}$$

 $m_2 = c + d$
 $m_3 = -a + \sqrt{c^2 + d^2 - cd}$
Neglecting phases,
3 parameters

For normal hierarchical limit m1<< m2<< m3, we have

$$m_1 \simeq 0 \rightarrow \Delta m_{\text{atm}}^2 \simeq 4(c^2 + d^2 - cd), \quad \Delta m_{\text{sol}}^2 \simeq (c+d)^2$$

After rotating by V_{tri-bi} , we get

$$M_{\nu} = V_{\text{tri-bi}} \begin{pmatrix} a+c-\frac{d}{2} & 0 & \frac{\sqrt{3}}{2}d \\ 0 & a+3b+c+d & 0 \\ \frac{\sqrt{3}}{2}d & 0 & a-c+\frac{d}{2} \end{pmatrix} V_{\text{tri-bi}}^{T}$$
$$a = -3b$$
$$U_{\text{MNS}} = V_{\text{tri-bi}} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$
$$\tan 2\theta = \frac{\sqrt{3}d}{-2c+d}$$

Mixing matrix elements are given

$$|U_{e2}| = \frac{1}{\sqrt{3}}$$
, $|U_{e3}| = \frac{2}{\sqrt{6}} |\sin \theta|$, $|U_{\mu3}| = \left| -\frac{1}{\sqrt{6}} \sin \theta - \frac{1}{\sqrt{2}} \cos \theta \right|$

Then, we obtain

$$\sin \theta_{13} = \frac{2}{\sqrt{6}} |\sin \theta| \qquad \sin \theta_{23} = \frac{1}{\cos \theta_{13}} \left(\frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{6}} \sin \theta \right)$$

where sin θ is fixed by neutrino masses
$$\tan 2\theta = \frac{\sqrt{3}d}{\sqrt{3}d} \qquad \Delta m_{31}^2 \qquad 4(c^2 + d^2 - cd)$$

$$\tan 2\theta = \frac{\sqrt{3}d}{-2c+d} \qquad \frac{\Delta m_{31}^2}{\Delta m_{21}^2} = \frac{4(c^2+d^2-cd)}{(c+d)^2}$$

for normal hierarchy limit m1<< m2<< m3

Taking account exp. with 3
$$\sigma$$
 $\frac{\Delta m_{31}^2}{\Delta m_{21}^2} = 26 \sim 38$

we obtain $\sin \theta = 0.16 \sim 0.18$ for normal hierarchy.

Then, we predict

 $\sin \theta_{13} = 0.133 \sim 0.146$ Exp. (Daya Bay 3 σ) $\sin \theta_{13} = 0.12 \sim 0.18$

 $\sin\theta_{23} = 0.64 - 0.65, \quad 0.77 \sim 0.78$

$$\sin\theta_{23}^2 = 0.40 - 0.42, \quad 0.59 \sim 0.61$$

Gianluigi Fogli

NEUTRINO 2012, Kyoto, June 5, 2012

Taking account phase, we obtain allowed region

$$\sin\theta_{13} = \frac{2}{\sqrt{6}} |\sin\theta e^{i\phi}| \qquad \sin\theta_{23} = \frac{1}{\cos\theta_{13}} \left(\frac{1}{\sqrt{2}}\cos\theta + \frac{1}{\sqrt{6}}\sin\theta e^{i\phi}\right)$$

Normal Hierarchy of Neutrino Masses

Inverted Hierarchy of Neutrino Masses

Remark: Three combinations give same result.

Present analyses

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ } \frac{\xi \text{ and } \xi''}{\xi \text{ and } \xi''}$$

$$\begin{cases} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ } \frac{\xi' \text{ and } \xi''}{\xi' \text{ and } \xi''}$$

]' and]"

3 Large θ_{13} and the neutrino masses

Daya Bay results

 $\sin \theta_{13} = 0.15 \pm 0.01$ Order of Cabbibo angle !?

What does this value of θ_{13} indicate ? Recall $\sin \theta_C \simeq \sqrt{\frac{m_d}{m_s}} \simeq 0.2$

 $\boldsymbol{\Theta}_{ij}$ could be related to neutrino masses explicitly.

Ratio of Neutrino Mass Squared differences

$$\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2} = 0.026 \sim 0.038 = \mathcal{O}(\lambda^2)$$

$$\sqrt{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.160 \sim 0.196 = \mathcal{O}(\lambda) \qquad \theta_{13} ?$$

$$\sqrt[4]{\frac{\Delta m_{
m sol}^2}{\Delta m_{
m atm}^2}} = 0.40 \sim 0.44 = \mathcal{O}(\sqrt{\lambda})$$

$$\sqrt[8]{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.63 \sim 0.66 = \mathcal{O}(\sqrt[4]{\lambda}) \qquad \theta_{23}?$$

Simple Model to get Large θ_{13} in terms of neutrino masses

Fukugita, Tanimoto, Yanagida, PLB 562(2003) 273 [arXiv:/0303177].

$$m_{E} = \begin{pmatrix} 0 & A_{\ell} & 0 \\ A_{\ell} & 0 & B_{\ell} \\ 0 & B_{\ell} & C_{\ell} \end{pmatrix}, \qquad m_{\nu D} = \begin{pmatrix} 0 & A_{\nu} & 0 \\ A_{\nu} & 0 & B_{\nu} \\ 0 & B_{\nu} & C_{\nu} \end{pmatrix}$$
$$M_{R} = M_{0}\mathbf{I}$$

Fritzsch texture failed in Quark sector!

Lepton Mixing Matrix

Fukugita, Shimizu, Tanimoto, Yanagida (PLB 2012), arXiv:1204.2389

$$U_{e2} \simeq -\left(\frac{m_1}{m_2}\right)^{1/4} + \left(\frac{m_e}{m_\mu}\right)^{1/2} e^{i\sigma} \qquad \begin{array}{c} 0.30 \\ 0.25 \\ 0.20 \\ 0.25 \\ 0.15 \\ 0.10 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.97 \\ 0.98 \\ 0.99 \\ 0.99 \\ 0.96 \\$$

maximal θ₂₃ is excluded Normal Mass Hierarchy

Neutrinoless Double Beta Decay

4 - 5.5 meV

Large $\theta_{13} \rightleftharpoons 0.15$ suggests breaking with tri-bimaximal mixing.

θ_{13} probably depends on neutrino masses ! Large θ_{13} is due to the neutrino mass ratios.

We should consider the origin of neutrino mass spectrum !

Why
$$\sqrt{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.160 \sim 0.196 = \mathcal{O}(\lambda)$$
 ?

At first

let us understand how to get the tri-bimaximal mixing in the example of A_4 flavor model.

G. Altarelli, F. Feruglio, Nucl. Phys. B720 (2005) 64

 $A_4 \times Z_3$ charge assignment A_4 Favor mode

	(L_e, L_μ, L_τ)	R_e^c	R^c_{μ}	R_{τ}^{c}	H _{u,d}	χ_{ℓ}	χ_{ν}	χ
A ₄	3	1	1'	1″	1	3	3	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω

 $\omega^3 = 1$

 $\chi_{\ell}, \chi_{\nu}, \chi$ are new scalars of gauge singlets.

 $\begin{array}{ccc} A_4 \text{ invariant superpotential can be written by:} \\ \text{for charged leptons} & 1' \times 1'' & \rightarrow 1 \end{array}$

$$W_{L} = \frac{y_{e}}{\Lambda} (L_{e}\chi_{\ell_{1}} + L_{\mu}\chi_{\ell_{3}} + L_{\tau}\chi_{\ell_{2}})R_{e}H_{d} \qquad 3_{L} \times 3_{flavon} \rightarrow 1$$

+ $\frac{y_{\mu}}{\Lambda} (L_{e}\chi_{\ell_{2}} + L_{\mu}\chi_{\ell_{1}} + L_{\tau}\chi_{\ell_{3}})R_{\mu}H_{d} \qquad 3_{L} \times 3_{flavon} \rightarrow 1''$
+ $\frac{y_{\tau}}{\Lambda} (L_{e}\chi_{\ell_{3}} + L_{\mu}\chi_{\ell_{2}} + L_{\tau}\chi_{\ell_{1}})R_{\tau}H_{d} + h.c., 3_{L} \times 3_{flavon} \rightarrow 1'$

for neutrinos

$$W_{\nu} = \frac{y_1}{\Lambda^2} (L_e L_e + L_\mu L_\tau + L_\tau L_\mu) H_u H_u \chi \quad \mathbf{3}_L \times \mathbf{3}_L \times \mathbf{1}_{\text{flavon}} \to \mathbf{1}$$
$$+ \frac{y_2}{3\Lambda^2} [(2L_e L_e - L_\mu L_\tau - L_\tau L_\mu) \chi_{\nu_1} \\ + (-L_e L_\tau + 2L_\mu L_\mu - L_\tau L_e) \chi_{\nu_2} \quad \mathbf{3}_L \times \mathbf{3}_L \times \mathbf{3}_{\text{flavon}} \to \mathbf{1}$$
$$+ (-L_e L_\mu - L_\mu L_e + 2L_\tau L_\tau) \chi_{\nu_3}] H_u H_u + h.c.,$$

$$\mathbf{3} \times \mathbf{3} \Rightarrow \mathbf{1} = a_1 * b_1 + a_2 * b_3 + a_3 * b_2$$

After $A_4 \times Z_3$ symmetry is spontaneously broken by VEVs of χ_ℓ , χ_ν , and χ , mass matrices are obtained as

$$M_{I} = \frac{V_{d}}{\Lambda} \begin{pmatrix} y_{e} \langle \chi_{\ell_{1}} \rangle & y_{e} \langle \chi_{\ell_{3}} \rangle & y_{e} \langle \chi_{\ell_{2}} \rangle \\ y_{\mu} \langle \chi_{\ell_{2}} \rangle & y_{\mu} \langle \chi_{\ell_{1}} \rangle & y_{\mu} \langle \chi_{\ell_{3}} \rangle \\ y_{\tau} \langle \chi_{\ell_{3}} \rangle & y_{\tau} \langle \chi_{\ell_{2}} \rangle & y_{\tau} \langle \chi_{\ell_{1}} \rangle \end{pmatrix}$$

$$M_{\nu} = \frac{v_{u}^{2}}{3\Lambda} \begin{pmatrix} 3y_{1} \langle \chi \rangle + 2y_{2} \langle \chi_{\nu_{1}} \rangle & -y_{2} \langle \chi_{\nu_{3}} \rangle & -y_{2} \langle \chi_{\nu_{2}} \rangle \\ -y_{2} \langle \chi_{\nu_{3}} \rangle & 2y_{2} \langle \chi_{\nu_{2}} \rangle & 3y_{1} \langle \chi \rangle - y_{2} \langle \chi_{\nu_{1}} \rangle \\ -y_{2} \langle \chi_{\nu_{2}} \rangle & 3y_{1} \langle \chi \rangle - y_{2} \langle \chi_{\nu_{1}} \rangle & 2y_{2} \langle \chi_{\nu_{3}} \rangle \end{pmatrix}$$

where $v_d = \langle H_d \rangle$, $v_u = \langle H_u \rangle$.

The mass matrices do not yet predict tri-bimaximal mixing ! Can one get Desired Vacuum in Spontaneous Symmetry Breaking ? We need Scalar Potential Analysis. If vacuum expectation values are aligned,

 $\langle \chi_{\ell} \rangle = (V_{\ell}, 0, 0)$ and $\langle \chi_{\nu} \rangle = (V_{\nu}, V_{\nu}, V_{\nu})$, which are obtained by potential analysis, then

$$M_{I} = \frac{v_{d}v_{T}}{\Lambda} \begin{pmatrix} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{pmatrix}$$

$$M_{\nu} = \frac{v_{u}^{2}}{\Lambda} \begin{pmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{pmatrix}.$$

where $a = y_{1}V/\Lambda$, $b = y_{2}V_{\nu}/\Lambda$.

$$3_{L} \times 3_{L} \times 3_{flavon} \qquad 3_{L} \times 3_{L} \times 3_{flavon} \qquad 3_{L} \times 3_{L} \times 1_{flavon}$$
$$M_{\nu} = \frac{v_{u}^{2}b}{\Lambda} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} - \frac{v_{u}^{2}b}{3\Lambda} \begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} + \frac{v_{u}^{2}a}{\Lambda} \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

Therefore, mixing matrix is tri-bimaximal matrix, and masses are

$$m_1 = \frac{v_u^2(a+b)}{\Lambda}, \quad m_2 = \frac{v_u^2 a}{\Lambda}, \quad m_3 = -\frac{v_u^2(a-b)}{\Lambda}.$$