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Outline

♦ Intro’: why is the up quark sector interesting ?

♦ Where are we regarding flavor d-alignment models?

♦ Summary.

♦ Collider constraints on non-degenerate/”universal” squarks.
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The importance of isospin up physics

♦ The up sector (u,c,t,      ) contains the top quark.

  Uniqueness of the top quark (relevant to this talk):

⌫0s

i. Most massive point like particle known, induces the most severe hierarchy 
problem, our main LHC hopes are due to ⇤t . 7TeV for fine tuning . 1 : 100.

!&Reinhard Schwienhorst, Michigan State University
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• Higgs mass & EW scale are ultra sensitive to quantum corrections. 

 The top & the fine tuning problem

Largest contributions are due to the top couplings.

    085  |  

על הבעיה הדמיונית הנ"ל, אם ניתן להראות שחיים על כדור הארץ לא 
ייתכנו כלל אם לא יתקיים הקשר הייחודי והנדיר בין מסלול הירח סביב 
ידוע  (למשל,  שלהם  והרדיוסים  השמש  סביב  הארץ  למסלול  הארץ 
שהירח מסייע לייצוב האקלים על פני כדור הארץ). כלומר, אם לא היה 
מתקיים יחס כזה בדיוק בין השמש, הירח וכדור הארץ, ממילא לא היינו 
כאן ולא יכולנו לזהות ולגלות אותו. מדובר בכוונון עדין שרק בזכותו יש 

חיים על כדור הארץ, והעולם שלנו לא יכול היה להיראות אחרת. 

בעיית הקבוע הקוסמולוגי
כמו שכבר ציינו, הכוונון העדין קשור גם לנושא הכוח החלש וגם 
כפי  זו,  בעיה  בקצרה  להבין  ננסה  הקוסמולוגי.  הקבוע  לשאלת 
הקוסמולוגי  הקבוע  בהקשר  התיאורטית  בפיזיקה  מטופלת  שהיא 

(המתקשים יכולים לדלג על השורות הבאות אל ראש הפרק הבא).
שמשלבת  שדות,  תורת  על–ידי  מתוארת  חלקיקים  של  פיזיקה 
היחסות  תורת  את  בתוכה 
הקוונטים.  תורת  עם  הפרטית 
פיזיקליים  גדלים  זו,  במסגרת 
הקוסמולוגי  הקבוע  כדוגמת 
(ובמסגרת "המודל הסטנדרטי" 
גם עוצמת הכוח החלש) רגישים באופן דרמטי לאפקטים קוונטיים 

(הנקראים תיקונים קרינתיים), וערכם מוגדר רק כאשר אפקטים 
אלו נלקחים בחשבון.

לדוגמה, תופעות הקשורות לכבידה קוונטית צפויות להתאפיין בסקלת 
 10109eV4 מסת פלנק השקולה למנת צפיפות אנרגיה פנטסטית של
מצפים  אנו  גס,  ובאופן  ברביעית),  אלקטרון–וולט  (מיליארד–גוגול 
שהתיקונים הקוונטיים לקבוע הקוסמולוגי יהיו מסדר גודל של מסה 
זו. אבוי, כי כמו שמתואר בהמשך, ערך זה של הקבוע הקוסמולוגי 
גדול פי 10 בחזקת 120 מגודלו הנצפה במדידות של הקבוע, השווה 

 .(0.001eV)4 בערך למילי אלקטרון–וולט ברביעית
יוצא מכך שעלינו להוסיף לתיאוריה שלנו קבוע נוסף מסדר גודל 
של מיליארד–גוגול אלקטרון–וולט ברביעית, ובסימן הפוך לתרומה 
המצופה מהתיקונים הקוונטיים, כך ששתי התרומות האסטרונומיות 
בגודלן יבטלו זו את זו עד כדי השארית הקטנטנה המתאימה לתצפית 
- כמו במקרה הדמיוני של גודלם הנצפה של השמש והירח. בצורה 

סכמטית, אם כן, הכוונון העדין של הקבוע הקוסמולוגי נראה כך: 
 

(0.001eV)4 = (10000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000
0000000000000000000.000000000001 - 1000000000000000
000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000) eV4

כינוי שניתן על–ידי פיזיקאים של 
אנרגיות גבוהות לתיאוריה המקובלת 

כיום, אשר מתארת את הכוחות 
הבסיסיים והחלקיקים היסודיים 

המרכיבים את עולמנו.   

מדענים נבוכים  לנוכח החפיפה המדוייקת של הירח את השמש. 
אנלוגיה לכוונון העדין בעולם הדמיוני

<<

The moon subtends an angle of ~ 0.54° while the sun of ~ 0.52°.

What if they were equal to 1:1032 ??

It would raise two questions:
(i) What set their precise distance?  <=> Tuning problem ().
(ii) Why perturbations not destabilize the system? <=> Fine tuning problem

(why is �⇥/⇥
max

⌧ 1 ?)
(why is m2

H/m2
Pl ⌧ 1 ?)

 The fine tuning problem

(ii) Why perturbations not destabilize system? <=> Fine tuning issue.
(displacing the sun by ⇠ 10�19 m ) �✓ ⇠ 10�32 )
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“Additive” sensitivity / fine tuning due to top-Higgs coupling:

ii. Controls flavor violation within the SM (standard model) => expect up flavor violation.

iii. Makes the weak scale unstable => eventually tunnel into weakless universe.
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The importance of isospin up physics

♦ The up sector (u,c,t,     ) contains the top quark.

  Uniqueness of the top quark (relevant to this talk):

⌫0s

ii. Controls flavor violation within the SM (standard model) => expect up flavor violation.

♦ We have fresh precision data, maybe hints towards up anarchy: 

♦ u-FCNC (flavor changing neutral currents),  only way to constrain alignment models,

where we have up anarchy but down flavor physics is boring, SM like.

 neutrino flavor parameters, t-charge asymm’, charm CPV ? 
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Some interesting up sector data

(i) Top charge asymmetries;

(ii) Charm CPV.
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• Combined CDF+DO results: 

 

 

 

 

• If QCD is small, can such large effects be due to heavy 
(non-resonant) new physics? 
→ first lessons from Effective Field Theory 

→EFT implications for the LHC 

 

• What naturalness has to say about AFB? 
→SUSY: ?? (see maybe Kamenik & Isodori ‘11) 

→warped extra-dimension or 4D strong dynamics: need to deviate 
from the generic flavor paradigm 

 

Synopsis 

AFB
inclusive  (18±4)%  

AFB
>450GeV  (28±6)%  

 

in ttbar  
rest frame post-Moriond 2012 

→ this talk 

QCD+EW state of the art: AFB
[inclusive|>450GeV]  [6.6|10]% ±?? (NLOx30%?) 

see A. Mitov talk 
Delaunay, Top physics workshop, CERN 12.

Forward-backward asymmetry in tt̄ production

Charge-(a)symmetric cross section

σa(s) =

∫ 1

0
cos θ

[

dσ(pp̄ → tt̄X )

d cos θ
− (+)

dσ(pp̄ → t̄tX )

d cos θ

]

P P̄

q̄q

t

t̄ B F

θ
At

FB =
Nt(F ) − Nt(B)

Nt(F ) + Nt(B)
=

σa

σs

Measurement at Tevatron: inclusive and in bins of invariant mass Mtt̄

(At
FB)pp̄

exp = (15.0 ± 5.0stat ± 2.4syst)%

(At
FB)Mtt̄ > 450 GeV

exp ≡ (At,>
FB )exp = (47.5 ± 11.4)%

[CDF ’11]
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Tevatron’s t¯t forward backward asymmetry.

Starring

Two important top asymmetry observables at Tevatron

Belle de Jour: top (�y) asymmetry

At¯t =
N(yt > y

¯t)� N(yt < y

¯t)

N(yt > y

¯t) + N(yt < y

¯t)

Poor Cousin: lepton asymmetry

A` =
N(qlyl > 0)� N(qlyl < 0)

N(qlyl > 0) + N(qlyl < 0)

Parton level results for lepton+jets channel

CDF with 8.7 fb�1

At¯t = 16.2± 4.7%

A` = 6.6± 2.5% (folded!)

D0 with 5.4 fb�1

At¯t = 19.6± 6.5%

A` = 15.2± 4.0%

SM

At¯t = 7-9%

A` = 2%

Starring

Two important top asymmetry observables at Tevatron

Belle de Jour: top (�y) asymmetry

At¯t =
N(yt > y

¯t)� N(yt < y

¯t)

N(yt > y

¯t) + N(yt < y

¯t)

Poor Cousin: lepton asymmetry

A` =
N(qlyl > 0)� N(qlyl < 0)

N(qlyl > 0) + N(qlyl < 0)

Parton level results for lepton+jets channel

CDF with 8.7 fb�1

At¯t = 16.2± 4.7%

A` = 6.6± 2.5% (folded!)

D0 with 5.4 fb�1

At¯t = 19.6± 6.5%

A` = 15.2± 4.0%

SM

At¯t = 7-9%

A` = 2%

Two kind of interesting asymmetries:

(i) Top charge asymmetry.

(ii) Lepton asymmetry.

Forward-backward asymmetry in tt̄ production

Charge-(a)symmetric cross section

σa(s) =

∫ 1

0
cos θ

[

dσ(pp̄ → tt̄X )

d cos θ
− (+)

dσ(pp̄ → t̄tX )

d cos θ

]

P P̄

q̄q

t

t̄ B F

θ
At

FB =
Nt(F ) − Nt(B)

Nt(F ) + Nt(B)
=

σa

σs

Measurement at Tevatron: inclusive and in bins of invariant mass Mtt̄

(At
FB)pp̄

exp = (15.0 ± 5.0stat ± 2.4syst)%

(At
FB)Mtt̄ > 450 GeV

exp ≡ (At,>
FB )exp = (47.5 ± 11.4)%

[CDF ’11]
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Experimental observables

• CPV in decays (direct CPV)

• Time-integrated CPV decay asymmetries to CP eigenstates

• Focus on K+K- and π+π- final states:

af ⌘ �(D0 ! f)� �(D̄0 ! f)

�(D0 ! f) + �(D̄0 ! f)
.

�aCP ⌘ aK+K� � a⇡+⇡�
CDF Note 10784

LHCb, 1112.0938

                    LHCb charm CPV 

See: J. Kamenik, Planck 12.

Experimental observables

• CPV in decays (direct CPV)

• Time-integrated CPV decay asymmetries to CP eigenstates

• Focus on K+K- and π+π- final states:

af ⌘ �(D0 ! f)� �(D̄0 ! f)

�(D0 ! f) + �(D̄0 ! f)
.

�aCP ⌘ aK+K� � a⇡+⇡�

(~4σ from 0)�aWorld

CP = �(0.67± 0.16)%
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Some common feature of new physics (NP) interpretations*

♦ Top asymmetry is special, not only top sector is probed: 
Large asymmetry (PDFs) => new dynamics couple to both                  
but in a non-universal manner => direct test of up NP sector.
(Furthermore the lepton asymmetry need not be related to top physics)

uū & tt̄

Falkowski, GP & Schmaltz (11).
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Some common feature of new physics (NP) interpretations*

♦ Top asymmetry is special, not only top sector is probed: 
Large asymmetry (PDFs) => new dynamics couple to both                  
but in a non-universal manner => direct test of up NP sector.
(Furthermore the lepton asymmetry need not be related to top physics)

uū & tt̄

Falkowski, GP & Schmaltz (11).

Before moving to charm CPV => 
let’s see it explicitly

using geometrical picture of
flavor breaking.
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Naively, the AFB has nothing to do with up flavor

All interpretation linked to up flavor physics:
Ex.: AFB from particle exchange (same holds for s-channel): 7

FIG. 6: Left panel: this diagram contributes to the tt̄ asymmetry, through interference with gluonic contributions to the
same process in the Standard Model. Right panel: a similar diagram gives rise to same-sign top quark production at tree
level. Experimental constraints on tt, t̄t̄ production must be taken into account when attempting to explain the observed tt̄
asymmetry.

V. t� t̄ FORWARD-BACKWARD ASYMMETRY AT THE TEVATRON

The forward-backward asymmetry in top quark pair production at the Tevatron has first been studied by the D0
and CDF experiments in Refs. [52, 53], and recently measured by CDF using a significantly larger dataset [16]. This
new analysis finds a 3.4⇥ discrepancy between the prediction of the Standard Model and the asymmetry measured in
events with a large tt̄ invariant mass (the discrepancy is less than 2⇥ if all values of the tt̄ invariant mass are included).
A more recent analysis by CDF identifies further evidence for such a discrepancy among tt̄ dilepton events [17].

One possible explanation for this discrepancy is a flavor-violating chirally coupled Z � boson that mixes, for instance,
up and top quarks [22, 54–59].3 Since such a Z � boson contributes to tt̄ production only in the t-channel (as shown in
Fig. 6), it will not necessarily lead to unacceptable modifications to the total tt̄ cross section, although contributions
to other processes such as same-sign top production (also shown in Fig. 6) must be taken into account.

To assess in more detail the consistency of a flavor-violating Z � boson with the CDF data, we consider the model
proposed in Ref. [22] in which the Z � couples through the operator

gutZ0Z �
µū�

µPRt+ h.c. , (1)

where PR = (1+ �5)/2 is the projector onto right-chiral states, and gutZ0 is the flavor-violating Z � coupling constant.
We have simulated tree-level tt̄ production in this model at the parton-level using MadGraph/MadEvent. We compute
the tt̄ asymmetry in the tt̄ rest frame as

Att̄
Z0 =

N(�y > 0)�N(�y < 0)

N(�y > 0) +N(�y < 0)
, (2)

where N(�y � 0) is the number of events in which the rapidity di⇥erence between the top and the anti-top quark is
less/greater than zero. Since our simulation is carried out at tree level, it includes only the new physics contribution to
the asymmetry, but not the Standard Model terms which arise at next-to-leading order. To compare our predictions to
CDF data, we therefore add the Standard Model asymmetry, which we take from Ref. [16]. In the left panel of Fig. 7,
we show the tt̄ asymmetry predicted in the Z � model (including the Standard Model contribution) for mZ0 = 150 GeV,
gutZ0 = 0.5, and compare it to CDF data and to the Standard Model prediction alone. We observe that the Z � model
can explain the increase of the asymmetry with increasing tt̄ invariant mass mtt̄.

In the right panel of Fig. 7, we show the preferred regions of the Z � parameter space. We find that a Z � with a mass
between 100 and 300 GeV, and couplings gutZ0 on the order of ⇥ 0.3–0.8 provides the best fit to the experimental
observations. We also show the constraints on the Z � model coming from measurements of the total cross section of

3 An alternative possibility is a W � boson coupling down and top quarks [60, 61]. Alternatively, axigluons [62–65] or other heavy color
multiplets [66–70] (but see also [71]) can be invoked to explain the CDF tt̄ asymmetry.

x(i) Again dijet kills the universal case. 

(ii) By itself flavor diagonal:                       .         gx

ut̄

= gx

11̄ � gx

33̄

Grinstein, et al.; Ligeti, et al. (11)
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Naively, the AFB has nothing to do with up flavor

All interpretation linked to up flavor physics:
Ex.: AFB from particle exchange (same holds for s-channel): 7

FIG. 6: Left panel: this diagram contributes to the tt̄ asymmetry, through interference with gluonic contributions to the
same process in the Standard Model. Right panel: a similar diagram gives rise to same-sign top quark production at tree
level. Experimental constraints on tt, t̄t̄ production must be taken into account when attempting to explain the observed tt̄
asymmetry.
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and CDF experiments in Refs. [52, 53], and recently measured by CDF using a significantly larger dataset [16]. This
new analysis finds a 3.4⇥ discrepancy between the prediction of the Standard Model and the asymmetry measured in
events with a large tt̄ invariant mass (the discrepancy is less than 2⇥ if all values of the tt̄ invariant mass are included).
A more recent analysis by CDF identifies further evidence for such a discrepancy among tt̄ dilepton events [17].

One possible explanation for this discrepancy is a flavor-violating chirally coupled Z � boson that mixes, for instance,
up and top quarks [22, 54–59].3 Since such a Z � boson contributes to tt̄ production only in the t-channel (as shown in
Fig. 6), it will not necessarily lead to unacceptable modifications to the total tt̄ cross section, although contributions
to other processes such as same-sign top production (also shown in Fig. 6) must be taken into account.

To assess in more detail the consistency of a flavor-violating Z � boson with the CDF data, we consider the model
proposed in Ref. [22] in which the Z � couples through the operator

gutZ0Z �
µū�

µPRt+ h.c. , (1)

where PR = (1+ �5)/2 is the projector onto right-chiral states, and gutZ0 is the flavor-violating Z � coupling constant.
We have simulated tree-level tt̄ production in this model at the parton-level using MadGraph/MadEvent. We compute
the tt̄ asymmetry in the tt̄ rest frame as

Att̄
Z0 =

N(�y > 0)�N(�y < 0)

N(�y > 0) +N(�y < 0)
, (2)

where N(�y � 0) is the number of events in which the rapidity di⇥erence between the top and the anti-top quark is
less/greater than zero. Since our simulation is carried out at tree level, it includes only the new physics contribution to
the asymmetry, but not the Standard Model terms which arise at next-to-leading order. To compare our predictions to
CDF data, we therefore add the Standard Model asymmetry, which we take from Ref. [16]. In the left panel of Fig. 7,
we show the tt̄ asymmetry predicted in the Z � model (including the Standard Model contribution) for mZ0 = 150 GeV,
gutZ0 = 0.5, and compare it to CDF data and to the Standard Model prediction alone. We observe that the Z � model
can explain the increase of the asymmetry with increasing tt̄ invariant mass mtt̄.

In the right panel of Fig. 7, we show the preferred regions of the Z � parameter space. We find that a Z � with a mass
between 100 and 300 GeV, and couplings gutZ0 on the order of ⇥ 0.3–0.8 provides the best fit to the experimental
observations. We also show the constraints on the Z � model coming from measurements of the total cross section of

3 An alternative possibility is a W � boson coupling down and top quarks [60, 61]. Alternatively, axigluons [62–65] or other heavy color
multiplets [66–70] (but see also [71]) can be invoked to explain the CDF tt̄ asymmetry.

x(i) Again dijet kills the universal case. 

(ii) By itself flavor diagonal:                       .         gx

ut̄

= gx

11̄ � gx

33̄

Grinstein, et al.; Ligeti, et al. (11)

(iii) However, x must be aware (aligned) of  the presence of      .    Yu
Blum, Grossman, Nir & GP (11);
Gedalia, Grossman, Nir & GP (11);
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we show the tt̄ asymmetry predicted in the Z � model (including the Standard Model contribution) for mZ0 = 150 GeV,
gutZ0 = 0.5, and compare it to CDF data and to the Standard Model prediction alone. We observe that the Z � model
can explain the increase of the asymmetry with increasing tt̄ invariant mass mtt̄.

In the right panel of Fig. 7, we show the preferred regions of the Z � parameter space. We find that a Z � with a mass
between 100 and 300 GeV, and couplings gutZ0 on the order of ⇥ 0.3–0.8 provides the best fit to the experimental
observations. We also show the constraints on the Z � model coming from measurements of the total cross section of

3 An alternative possibility is a W � boson coupling down and top quarks [60, 61]. Alternatively, axigluons [62–65] or other heavy color
multiplets [66–70] (but see also [71]) can be invoked to explain the CDF tt̄ asymmetry.

x(i) Again dijet kills the universal case. 

(ii) By itself flavor diagonal:                       .         gx

ut̄

= gx

11̄ � gx

33̄

Grinstein, et al.; Ligeti, et al. (11)

�8 / diag(0, 0, 1)

�4 =
0 0 1
0 0 0
1 0 0

(iii) However, x must be aware (aligned) of  the presence of      .    Yu
Blum, Grossman, Nir & GP (11);
Gedalia, Grossman, Nir & GP (11);
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events with a large tt̄ invariant mass (the discrepancy is less than 2⇥ if all values of the tt̄ invariant mass are included).
A more recent analysis by CDF identifies further evidence for such a discrepancy among tt̄ dilepton events [17].

One possible explanation for this discrepancy is a flavor-violating chirally coupled Z � boson that mixes, for instance,
up and top quarks [22, 54–59].3 Since such a Z � boson contributes to tt̄ production only in the t-channel (as shown in
Fig. 6), it will not necessarily lead to unacceptable modifications to the total tt̄ cross section, although contributions
to other processes such as same-sign top production (also shown in Fig. 6) must be taken into account.

To assess in more detail the consistency of a flavor-violating Z � boson with the CDF data, we consider the model
proposed in Ref. [22] in which the Z � couples through the operator

gutZ0Z �
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µPRt+ h.c. , (1)

where PR = (1+ �5)/2 is the projector onto right-chiral states, and gutZ0 is the flavor-violating Z � coupling constant.
We have simulated tree-level tt̄ production in this model at the parton-level using MadGraph/MadEvent. We compute
the tt̄ asymmetry in the tt̄ rest frame as
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Z0 =
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N(�y > 0) +N(�y < 0)
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where N(�y � 0) is the number of events in which the rapidity di⇥erence between the top and the anti-top quark is
less/greater than zero. Since our simulation is carried out at tree level, it includes only the new physics contribution to
the asymmetry, but not the Standard Model terms which arise at next-to-leading order. To compare our predictions to
CDF data, we therefore add the Standard Model asymmetry, which we take from Ref. [16]. In the left panel of Fig. 7,
we show the tt̄ asymmetry predicted in the Z � model (including the Standard Model contribution) for mZ0 = 150 GeV,
gutZ0 = 0.5, and compare it to CDF data and to the Standard Model prediction alone. We observe that the Z � model
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In the right panel of Fig. 7, we show the preferred regions of the Z � parameter space. We find that a Z � with a mass
between 100 and 300 GeV, and couplings gutZ0 on the order of ⇥ 0.3–0.8 provides the best fit to the experimental
observations. We also show the constraints on the Z � model coming from measurements of the total cross section of

3 An alternative possibility is a W � boson coupling down and top quarks [60, 61]. Alternatively, axigluons [62–65] or other heavy color
multiplets [66–70] (but see also [71]) can be invoked to explain the CDF tt̄ asymmetry.
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Naively, the AFB has nothing to do with up flavor

All interpretation linked to up flavor physics:
Ex.: AFB from particle exchange (same holds for s-channel): 7
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Some common feature of new physics (NP) interpretations*

♦ Top asymmetry is special, not only top sector is probed =>

     uFCNC (& possibly dFCNC) needs to be considered.  

♦ Charm “anomaly” requires large          couplings.c̄uX

X = Gµ⌫

X = (ss̄)V+A

Grossman, Nir & Kagan (07); Giudice, Isidori & Paradisi (12);        
Keren-Zur et al. (12); Delaunay, Kamenik, GP & Randall, today! (12).

* Not clear whether the charm CPV measurement requires NP.
Golden & Grinstein (89); Brod, Kagan & Zupan (11); 
Brod, Grossman, Kagan & Zupan; Feldmann, Nandi & Soni (12).

Isidori, Kamenik, Ligeti & GP (11).

Da Rold, Delaunay, Grojean & GP, to appear.

D � D̄
Needless to say, such coupling can potentially lead
to disastrous contributions to            mixing  &            .  (C:  J. Kamenik’s talk)       ✏0/✏K

Options:
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uFCNC data, a crucial test of alignment 

Yasmin & Gilad Perez <jasgilperez@gmail.com>
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Modify/Cancel Reservation
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Featured Offer
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Reservation Information
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Priority Club Rewards:
Your Priority Club Rewards number applies to this reservation.
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PM
Check-Out: Mon 22 Mar 2010 at 12:00
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   Add to Calendar
View/Modify/Cancel Reservation

Hotel Information
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39-0331-18330
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♦Down & lepton flavor violation => removed via alignment, where 

anarchic NP is diagonal in down/charged-lepton mass basis.

careful domino alignment

[Nir & Seiberg, PLB (93); Fitzpatrick, GP & Randall, PRL (08);  Csaki, GP, Surujon, & Weiler,  PRD (09)]
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The importance of up-type FCNC
What if down/lepton alignment is at work ?

12



Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9
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I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators

1

same sign t’s

The importance of up-type FCNC
What if down/lepton alignment is at work ?
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(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS
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L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators
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Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im
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(t̄L�µuL)2
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1
⇥2
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(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing
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1

same sign t’s

The importance of up-type FCNC
What if down/lepton alignment is at work ?

uFCNC remove
immunities

12



Combining K0 � K0 mixing and D0 � D0 mixing
to constrain the flavor structure of new physics

Kfir Blum,1, ⇥ Yuval Grossman,2, † Yosef Nir,1, ‡ and Gilad Perez1, §

1Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
2Institute for High Energy Phenomenology, Newman Laboratory of

Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Two generation covariance description (crash course)
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3
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In terms of � and ⇥, we obtain

|zsd| = �2
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�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
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⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
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, (27)

and is given by

�2
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exp
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Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
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⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
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+ mQ̃2
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⇧2
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�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
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mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Two generation covariance description (crash course)

XQ  is 2x2 Hermitian matrix, can be described as a 
vector in SU(2) 3D flavor space.

Space can be span via the SM Yukawas (useful for CPV,  see later):

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
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This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
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Combining K0 � K0 mixing and D0 � D0 mixing
to constrain the flavor structure of new physics
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

Two generation covariance description (crash course)

Use EFT to describe flavor violation:
K � ¯K mixing:

1
⇤2

NP

�
¯dL�µsL

�2

D � ¯D mixing:

1
⇤2

NP
(ūL�µcL)

2

QLi = (uL, dL)i , i, j 2 1, 2 .
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Two generation covariance crash course, cont’

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
u

.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:

| ~A| ¥
r

1

2
tr(A2) , ~A · ~B ¥ 1

2
tr(AB) , ~A£ ~B ¥ ° i

2
[A,B] ,

cos(µ
AB

) ¥
~A · ~B

| ~A|| ~B| =
tr(AB)

p

tr(A2)tr(B2)
.

(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)

L

-invariant operator, involving only
quark doublets,

z1

§2
NP

O1 =
1

§2
NP

°

Q
i

(X
Q

)
ij

∞
µ

Q
j

¢ °

Q
i

(X
Q

)
ij

∞µQ
j

¢

, (4)

where §NP is some high energy scale and z1 is the Wilson coe±cient. X
Q

is a traceless hermitian
matrix, transforming as an adjoint of SU(3)

Q

(or SU(2)
Q

for two generations), so it “lives” in
the same space as A

d

and A
u

.3 In the down sector for example, the operator above is relevant
for flavor violation through K0°K0 mixing. To analyze its contribution, we define a covariant
basis for each sector, with the following unit vectors

Â
u,d

¥ A
u,d

|A
u,d

| , Ĵ ¥ A
d

£A
u

|A
d

£A
u

| , Ĵ
u,d

¥ Â
u,d

£ Ĵ . (5)

Then the contribution of the operator in Eq. (4) to ¢c, s = 2 processes is given by the mis-
alignment between X

Q

and A
u,d

, which is equal to

Ø

Ø

Ø

zD,K

1

Ø

Ø

Ø

=
Ø

Ø

Ø

X
Q

£ Â
u,d

Ø

Ø

Ø

2
. (6)

This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A

d

is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
X

Q

, so that
Ø

ØzK

1

Ø

Ø = |(X
Q

)12|2. Furthermore, |(X
Q

)12| is simply the combined size of the æ1 and
æ2 components of X

Q

. Its size is given by the length of X
Q

times the sine of the angle between
X

Q

and A
d

(see Fig 1). This is exactly what Eq. (6) describes.

2The factor of °i/2 in the cross product is required in order to have the standard geometrical interpretation
Ø

Ø

Ø

~A£ ~B
Ø

Ø

Ø

= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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u,d

¥ Â
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Two generation covariance crash course, cont’

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
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based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
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= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

      recall: 

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Figure 1: The contribution of X
Q

to K0 °K0 mixing, ¢m
K

, given by the solid blue line. In
the down mass basis, Â

d

corresponds to æ3, Ĵ is æ2 and Ĵ
d

is æ1.

Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥

X
Q

· Ĵ
u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.
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XQ is a vector in this space:

Two generation covariance description
XQ  is 2x2 Hermitian matrix, can be described as a 
vector in SU(2) 3D flavor space.

The space can be span by using the SM Yukawas (very useful 
for CPV, see later):

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
u

.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:

| ~A| ¥
r

1

2
tr(A2) , ~A · ~B ¥ 1

2
tr(AB) , ~A£ ~B ¥ ° i

2
[A,B] ,

cos(µ
AB

) ¥
~A · ~B

| ~A|| ~B| =
tr(AB)

p

tr(A2)tr(B2)
.

(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)

L

-invariant operator, involving only
quark doublets,

z1

§2
NP

O1 =
1

§2
NP

°

Q
i

(X
Q

)
ij

∞
µ

Q
j

¢ °

Q
i

(X
Q

)
ij

∞µQ
j

¢

, (4)

where §NP is some high energy scale and z1 is the Wilson coe±cient. X
Q

is a traceless hermitian
matrix, transforming as an adjoint of SU(3)

Q

(or SU(2)
Q

for two generations), so it “lives” in
the same space as A

d

and A
u

.3 In the down sector for example, the operator above is relevant
for flavor violation through K0°K0 mixing. To analyze its contribution, we define a covariant
basis for each sector, with the following unit vectors

Â
u,d

¥ A
u,d

|A
u,d

| , Ĵ ¥ A
d

£A
u

|A
d

£A
u

| , Ĵ
u,d

¥ Â
u,d

£ Ĵ . (5)

Then the contribution of the operator in Eq. (4) to ¢c, s = 2 processes is given by the mis-
alignment between X

Q

and A
u,d

, which is equal to

Ø

Ø

Ø

zD,K

1

Ø

Ø

Ø

=
Ø

Ø

Ø

X
Q

£ Â
u,d

Ø

Ø

Ø

2
. (6)

This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A

d

is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
X

Q

, so that
Ø

ØzK

1

Ø

Ø = |(X
Q

)12|2. Furthermore, |(X
Q

)12| is simply the combined size of the æ1 and
æ2 components of X

Q

. Its size is given by the length of X
Q

times the sine of the angle between
X

Q

and A
d

(see Fig 1). This is exactly what Eq. (6) describes.

2The factor of °i/2 in the cross product is required in order to have the standard geometrical interpretation
Ø

Ø

Ø

~A£ ~B
Ø

Ø

Ø

= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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Two generation covariance description
XQ  is 2x2 Hermitian matrix, can be described as a 
vector in SU(2) 3D flavor space.

The space can be span by using the SM Yukawas (very useful 
for CPV, see later):

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
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.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:
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These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)
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-invariant operator, involving only
quark doublets,
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where §NP is some high energy scale and z1 is the Wilson coe±cient. X
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is a traceless hermitian
matrix, transforming as an adjoint of SU(3)
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(or SU(2)
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for two generations), so it “lives” in
the same space as A
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and A
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.3 In the down sector for example, the operator above is relevant
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This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A
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is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
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, so that
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

A 2-gen’ case, 3 adjoints yield CPV:

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Notice that:

Figure 1: The contribution of X
Q

to K0 °K0 mixing, ¢m
K

, given by the solid blue line. In
the down mass basis, Â

d

corresponds to æ3, Ĵ is æ2 and Ĵ
d

is æ1.

Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥

X
Q

· Ĵ
u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.

4

Projection of XQ onto

ˆJ is measuring the physical CPV phase.
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a cross product and an angle between two vectors, all of which are basis
independent‡:

| ~A| ⌘
r

1
2
tr(A2) , ~A · ~B ⌘ 1

2
tr(A B) , ~A⇥ ~B ⌘ � i

2
[A, B] ,

cos(✓AB) ⌘
~A · ~B

| ~A|| ~B|
=

tr(A B)
p

tr(A2)tr(B2)
.

(38)

These definitions allow for an intuitive understanding of the flavor and
CP violation induced by a new physics source, based on simple geometric
terms. Consider a dimension six SU(2)L-invariant operator, involving only
quark doublets,

C
1

⇤2

NP

O
1

=
1

⇤2

NP

⇥

Qi(XQ)ij�µQj

⇤ ⇥

Qi(XQ)ij�
µQj

⇤

, (39)

where ⇤
NP

is some high energy scale.§ XQ is a traceless hermitian matrix,
transforming as an adjoint of SU(3)Q (or SU(2)Q for two generations), so it
“lives” in the same space as AQd and AQu . In the down sector for example,
the operator above is relevant for flavor violation through K�K mixing. To
analyze its contribution, we define a covariant orthonormal basis for each
sector, with the following unit vectors

ÂQu,Qd ⌘
AQu,Qd

�

�AQu,Qd

�

�

, Ĵ ⌘ AQd ⇥AQu

�

�AQd ⇥AQu

�

�

, Ĵu,d ⌘ ÂQu,Qd ⇥ Ĵ . (40)

Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd

�

�

�

2

. (41)

This result is manifestly invariant under a change of basis. The meaning
of Eq. (41) can be understood as follows: We can choose an explicit basis,
for example the down mass basis, where AQd is proportional to �

3

. �s = 2
transitions are induced by the o↵-diagonal element of XQ, so that

�

�CK
1

�

� =
|(XQ)

12

|2. Furthermore, |(XQ)
12

| is simply the combined size of the �
1

and
�

2

components of XQ. Its size is given by the length of XQ times the sine of

‡The factor of �i/2 in the cross product is required in order to have the standard

geometrical interpretation
˛̨
˛ ~

A⇥ ~

B

˛̨
˛ = | ~

A|| ~B| sin ✓AB , with ✓AB defined through the scalar

product as in Eq. (38).
§This use of e↵ective field theory to describe NP contributions will be explained in detail
in the next section. Note also that we employ here a slightly di↵erent notation, more
suitable for the current needs, than in the next section.
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the angle between XQ and AQd (see Fig. 6). This is exactly what Eq. (41)
describes.

Fig. 6. The contribution of XQ to K

0�K

0 mixing, �mK , given by the solid blue line.

In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken

from.59
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0 mixing, �mK , given by the solid blue line. In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken from.59

Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)
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Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd
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suitable for the current needs, than in the next section.
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Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)

(Sorry Au,d ⌘ AQu,Qd)
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Plugging Eqs. (78) and (79) into Eq. (41), we obtain expressions for the
contribution of XQ to �mK and �mD, without CPV,

CK
1

= L2

h

�

XJ
�

2

+
�

XJ
d

�

2

i

,

CD
1

=
L2

2

h

2
�

XJ
�

2

+
�

Xd
�

2

+
�

XJ
d

�

2

+
⇣

�

XJ
d

�

2 �
�

Xd
�

2

⌘

cos(4✓
C

) + 2XdXJ
d sin(4✓

C

)
i

.

(82)

In order to minimize both contributions, we first need to set XJ = 0. Next
we define

tan↵ ⌘ XJ
d

Xd
, rKD ⌘

v

u

u

t

�

CK
1

�

exp

�

CD
1

�

exp

, (83)

where the experimental constraints
�

CK
1

�

exp

and
�

CD
1

�

exp

can be extracted
from Table ??. Then the weakest bound is obtained for

tan↵ =
rKD sin(2✓

C

)
1 + rKD cos(2✓

C

)
, (84)

and is given by

L  3.8⇥ 10�3

✓

⇤
NP

1 TeV

◆

. (85)

A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by

L  3.4⇥ 10�4

h

(XJ)2 � (XJ)4
i

1/4

✓

⇤
NP

1 TeV

◆

. (86)

The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.

.
YdY

†
d

.
YuY †

u

)
.
2�C

.
XQ

)
.
2�d

ÂQd

Ĵd
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A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by
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The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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1 + rKD cos(2✓

C

)
, (84)

and is given by

L  3.8⇥ 10�3

✓

⇤
NP

1 TeV

◆

. (85)

A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by

L  3.4⇥ 10�4

h

(XJ)2 � (XJ)4
i

1/4

✓

⇤
NP

1 TeV

◆

. (86)

The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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Plugging Eqs. (78) and (79) into Eq. (41), we obtain expressions for the
contribution of XQ to �mK and �mD, without CPV,
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In order to minimize both contributions, we first need to set XJ = 0. Next
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The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D

systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The
figure is taken from.23

Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The figure is taken from.23

5.2.2. Third generation �F = 1 transitions

Similar to the analysis of the previous subsection, we can use other types of
processes to obtain model independent constrains on new physics. Here we
consider flavor violating decays of third generation quarks in both sectors,
utilizing the three generations framework discussed in Sec. 4.2. Since the
existing bound on top decay is rather weak, we use the projection for the
LHC bound, assuming that no positive signal is obtained.

We focus on the following operator

Oh
LL = i

⇥

Qi�
µ(XQ)ijQj

⇤

h

H†

 !
D µH

i

+ h.c. , (87)

which contributes at tree level to both top and bottom decays.83 We omit
an additional operator for quark doublets, Ou

LL = i
h

Q
3

H̃
i h

�

D/H̃
�

†

Q
2

i

�

i
h

Q
3

�

D/H̃
�

i h

H̃†Q
2

i

, which induces bottom decays only at one loop, but in
principle it should be included in a more detailed analysis.

Blum, Grossman, Nir & GP  (09)
Gedalia, Mannelli & GP (11)
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q ij (⇥q
ij)MM ⌃⇥q

ij⌥
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (⇥q
ij)MM and on ⌃⇥q

ij⌥, where q = u, d and
M = L, R. The constraints are given for m̃q = 1 TeV and x ⇤ m2

g̃/m̃
2
q = 1. We assume that

the phases could suppress the imaginary parts by a factor ⇧ 0.3. The bound on (⇥d
23)RR is about

3 times weaker than that on (⇥d
23)LL (given in table). The constraints on (⇥d

12,13)MM , (⇥u
12)MM

and (⇥d
23)MM are based on, respectively, Refs. [143], [17] and [144].

q ij (⇥q
ij)LR

d 12 2⇥ 10�4

d 13 0.08
d 23 0.01
d 11 4.7⇥ 10�6

u 11 9.3⇥ 10�6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (⇥q
ij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ⇤ m2
g̃/m̃

2
q = 1. The constraints on ⇥d

12,13, ⇥u
12, ⇥d

23

and ⇥q
ii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between

the neutron and quark EDMs as in [148]).

For large tan �, some constraints are modified from those in Table 4. For instance, the
e⇥ects of neutral Higgs exchange in Bs and Bd mixing give, for tan � = 30 and x = 1 (see [140,
145, 146] and refs. therein for details):

⌃⇥d
13⌥ < 0.01

�
MA0

200 GeV

⇥
, ⌃⇥d

23⌥ < 0.04

�
MA0

200 GeV

⇥
, (132)

where MA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as
(30/ tan �)2.

The experimental constraints on the (⇥q
ij)LR parameters in the quark-squark sector are

presented in Table 5. The bounds are the same for (⇥q
ij)LR and (⇥q

ij)RL, except for (⇥d
12)MN ,

where the bound for MN = LR is 10 times weaker. Very strong constraints apply for the
phase of (⇥q

11)LR from EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on
(⇥u,d,�

11 )LR are weakened by a factor ⇧ 6.
While, in general, the low energy flavor measurements constrain only the combinations of

the suppression factors from degeneracy and from alignment, such as Eq. (130), an interesting
exception occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the
first two generation squark doublets (based on the analysis in Sec. 5.2.1). Here, for masses
below the TeV scale, some level of degeneracy is unavoidable [23]:

m eQ2
�m eQ1

m eQ2
+ m eQ1

⌅
⇤

0.034 maximal phases

0.27 vanishing phases
(133)

Similarly, using �F = 1 processes involving the third generation (Sec. 5.2.2), the following

42

Taking [29] m̃Q = 1
2(m̃Q1 + m̃Q2) and similarly for the SU(2)-singlet squarks, we find that

we thus have an upper bound on the splitting between the first two squark generations:

mQ̃2
�mQ̃1

mQ̃2
+ mQ̃1

⇥< 0.05� 0.14,

mũ2 �mũ1

mũ2 + mũ1
⇥< 0.02� 0.04. (6.12)

The first bound applies to the up squark doublets, while the second to the average of the

doublet mass splitting and the singlet mass splitting. The range in each of the bounds

corresponds to values of the phase between zero and maximal. We can thus make the

following conclusions concerning models of alignment:

1. The mass splitting between the first two squark doublet generations should be below

14%. For phases of order one, the bound is about 2� 3 times stronger.

2. In the simplest models of alignment, the mass splitting between the first two squark

generations should be smaller than about four percent.

3. The second (stronger) bound can be avoided in more complicated models of alignment,

where holomorphic zeros suppress the mixing in the singlet sector.

4. While RGE e⇥ects can provide some level of universality, even for anarchical boundary

conditions, the upper bound (6.12) requires not only a high scale of mediation [30] but

also that, at the scale of mediation, the gluino mass is considerably higher than the

squark masses.

In any model where the splitting between the first two squark doublet generations is larger

than O(y2
c ), |K

uL
21 �KdL

21 | = sin ⇥c = 0.23. Given the constraints from �mK and �K on |KdL
12 |,

one arrives at a constraint very similar to the first bound in Eq. (6.12). We conclude that

the constraints on the level of degeneracy between the squark doublets (stronger than five

to fourteen percent) applies to any supersymmetric model where the mass of the first two

squark doublet generations is below TeV. It is suggestive that the mechanism that mediates

supersymmetry breaking is flavor-universal, as in gauge mediation.

13

(squark doublets, 1TeV)                                                

SUSY implications, naively looks like alignment is dead!!

	
  K.	
  Blum,	
  Y.	
  Grossman,	
  Y.	
  Nir	
  and	
  G.	
  Perez,	
  PRL	
  (2009)	
  

However ...  

With phases, first 2 gen’ squark need to have almost 
equal masses.

Looks like squark anarchy/alignment is dead!

What is XQ in the SUSY case?
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How alignment models really work?

• Maximal	
  phases	
  =>	
  not	
  correspond	
  to	
  an	
  alignment	
  model.
• Alignment	
  makes	
  both	
  real	
  and	
  imaginary	
  parts	
  small.	
  

Ĵ is universal (�2 is SO(2) invariant) ) small physical phase!

wrong                                 correct
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FIG. 1: The bound on �

12
Q as a function of the angle ↵ (see text). The angle ↵ is plotted on a log scale in the basis �C = 0.23,

so that a value of 1 on the x axis corresponds to ↵ = �C (large angle), while a value of 5 gives ↵ = �

5
C (small angle — down

alignment). The vertical doted line shows the angle of optimal alignment (weakest bound). The red (blue) shaded region
corresponds to a gluino mass mg̃ of 1 (1.5) TeV, and inside each region the average squark mass m̄Q̃ is varied in the range
[0.8mg̃, 1.2mg̃]. The upper edge of each region (weakest bound) comes from the lowest m̄Q̃ . The two dashed lines correspond
to m̄Q̃ = mg̃ .

is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
The vertical dashed line marks the transition point, where the alignment is optimal, yet as evident from the plot,
making the angle smaller only mildly a↵ects the bound on �12Q . For the case where the gluino mass and the average
squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP

violating phase is of order �2.5
C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically

1

↵s(MS)
=

1

↵s(⇤)
+

b
3

2⇡
ln

⇤

MS
, (25)

mg̃(⇤)

mg̃(MS)
= 1 + ↵s(⇤)

b
3

2⇡
ln

⇤

MS
, (26)

m2

˜Q1,2
(MS)�m2

˜Q1,2
(⇤) =

8

3b
3

⇥
mg̃(⇤)

2 �mg̃(MS)
2

⇤
, (27)

where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
m2

˜Q
(µ) = m2

˜Q1
(µ) +m2

˜Q2
(µ) and �m2

˜Q
(µ) = m2

˜Q2
(µ)�m2

˜Q1
(µ). Then in our approximation,

only
P

m2 has a nontrivial RGE evolution, while �m2 is invariant. Writing

�12Q (µ) =
�m2

˜Q
(µ)

P
m2

˜Q
(µ)

h
1 +

r
1�

⇣
�m2

˜Q
(µ)/

P
m2

˜Q
(µ)

⌘
2

i , (28)
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is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
The vertical dashed line marks the transition point, where the alignment is optimal, yet as evident from the plot,
making the angle smaller only mildly a↵ects the bound on �12Q . For the case where the gluino mass and the average
squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP

violating phase is of order �2.5
C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically

1

↵s(MS)
=

1

↵s(⇤)
+
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⇤

MS
, (25)

mg̃(⇤)
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⇤
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⇤
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where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
m2

˜Q
(µ) = m2

˜Q1
(µ) +m2

˜Q2
(µ) and �m2

˜Q
(µ) = m2

˜Q2
(µ)�m2

˜Q1
(µ). Then in our approximation,

only
P

m2 has a nontrivial RGE evolution, while �m2 is invariant. Writing
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is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
The vertical dashed line marks the transition point, where the alignment is optimal, yet as evident from the plot,
making the angle smaller only mildly a↵ects the bound on �12Q . For the case where the gluino mass and the average
squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP

violating phase is of order �2.5
C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically

1

↵s(MS)
=

1
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+
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, (25)
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where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
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C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically
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where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define
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We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,

Au ⌘ (YuY
†
u )/tr , Ad ⌘ (YdY

†
d )/tr , (1)

ar
X

iv
:1

20
2.

50
38

v1
  [

he
p-

ph
]  

22
 F

eb
 2

01
2

CERN-PH-TH/2012-030

On the Universality of CP Violation in �F = 1 Processes

Oram Gedalia,1 Jernej F. Kamenik,2, 3 Zoltan Ligeti,4 and Gilad Perez1, 5

1Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
2J. Stefan Institute, Jamova 39, P. O. Box 3000, 1001 Ljubljana, Slovenia

3Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
4Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

5CERN, Theory Division, CH1211 Geneva 23, Switzerland

We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
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operator, O
7

, is also important at small q2. The B ! K⇤`+`� mode is particularly promising, since the distribution
of the K⇤ ! K⇡ decay products allows to extract information about the polarization of the K⇤. When combined
with the angular distributions of the two charged leptons, it is possible to construct observables probing directly CP
violating contributions to the relevant short-distance Wilson coe�cients [23]. Such observables could potentially be
measured at LHCb and SuperB [24]. On the other hand, the direct CP asymmetries depend on strong phases, which
are small in the inclusive B ! Xs`+`� decay (outside the resonance region), and are poorly known in the exclusive
B ! K(⇤)`+`� case. Another probe of this physics could be the study of time-dependent CP asymmetries in these
modes. While these are challenging experimentally, the interpretation of the results would be theoretically cleaner.
The SM predicts that the time-dependent CP asymmetry vanishes, as it does in Bs ! ��, to an even better accuracy
than in Bs !  �, due to a 2�s � 2�s cancellation between the mixing and decay phases. The same cancellation
occurs in NP models in which the mixing amplitude is modified as MSM

12

⇥ R2 and the decay amplitude is modified
as ASM ⇥ R. While this is the case in most supersymmetric models, it is not generic, and is violated, for example,
by models containing a Z 0 which has a flavor changing coupling to quarks and non-universal couplings to quarks and
leptons. (With very large data sets at the upgraded LHCb, a time-dependent Bs ! µ+µ� analysis would also be
worth pursuing.)

To analyze the connection between t ! cZ and FCNC b ! s decays, we need to consider the NP operators
before the Z is integrated out [25]. For example, the operator (b̄s)V�A (H†DH) contributes to Eq. (20), since after
electroweak symmetry breaking H†DµH ! gv2Zµ. Thus the relevant Wilson coe�cient, CH

bs , is constrained from
B ! Xs`+`�, similar to Eq. (22), as

��Im(CH
bs)
�� < 8.7⇥ 10�3 (⇤

NP

/TeV)2. Top decays into final states with a jet and
a pair of charged leptons o↵er a probe of the related (Xu

L)tc and (Xu
L)tu contributions [26]. The expected sensitivity

of this mode with 100 fb�1 at the 14 TeV LHC is |CH
tc(u)| . 0.2 (⇤

NP

/TeV)2 [25, 27], where the relevant operator is

defined as (t̄c(u))V�A (H†DH). According to Eq. (7), we can conclude that barring cancellations, any experimental
signal of CP violation in this channel would have to be due to SU(3)U breaking NP.

V. IMPLICATIONS FOR SUSY MODELS

In SUSY models the left-handed squark mass-squared matrix, m̃2

Q , is the only source of SU(3)Q breaking, and
is approximately SU(2)L invariant (see, e.g., [28] and references therein). In the following we discuss a universal
constraint on m̃2

Q from �F = 1 CP violation. In addition, we consider an example of �F = 2 constraints in relation
to alignment models, where our argument about universality of the CP phase also plays a role. In all cases the bounds
can be directly applied on the corresponding mass insertion parameters.

First we analyze the constraint from ✏0/✏. In the super-CKM basis, the neutral gaugino couplings are flavor
diagonal, while the mass matrices of the squarks are not diagonal in general. New contributions to CP violation
in �F = 1 processes involving left handed quarks are induced by the imaginary o↵-diagonal elements of m̃2

Q , and

can be parameterized in terms of the ratios �ijLL ⌘
�
m̃2

Q

�ij
/ m̄2

˜Q
, where i, j = 1, 2 are flavor indices and m̄

˜Q ⌘
(m

˜Q1
+m

˜Q2
)/2 is the average squark mass (this choice is consistent to linear order with the convention of [29]). The

experimental constraint on new contributions to ✏0/✏ is translated to the following bound on the left-handed mass
insertion parameter [29] Im �12LL  0.5 for m̄

˜Q = mg̃ = 500 GeV . This can be straightforwardly rephrased as a robust
constraint on the level of degeneracy

�12Q ⌘
m

˜Q2
�m

˜Q1

m
˜Q2

+m
˜Q1

 0.25

 
500GeV

m̄
˜Q

!
. (24)

This bound is weaker than the one obtained by combining the bounds from ✏K andD�D mixing [1]. Yet, interestingly,
it could have constrained degeneracy without the need for any additional measurements involving D mesons, more
than 20 years ago already, when the experimental uncertainty of ✏0/✏ approached the 10�3 level [30].

Constraints on alignment models that balance the bounds from mixing and CP violation in the K and D systems
have been analyzed in [1]. Here we comment on their results for supersymmetric models based on our CP universality
argument. According to the parameterization employed in [1], sin↵ (sin 2�) is proportional to the real (imaginary)
part of the o↵-diagonal element of the NP flavor violating source in the down mass basis. CP universality implies that
in the up mass basis, sin 2� still corresponds to the imaginary part, while the real part is rotated by twice the Cabibbo
angle. Equation (31) in [1] gives the bounds on squark mass degeneracy for the cases of vanishing (sin 2� = 0) and
maximal (sin 2� ⇠ 1) phase. We argue that the latter case is irrelevant, since it violates the assumption of alignment.
In contrast, while realistic models of alignment generically do not control the fundamental CP violating phases, they
force both sin↵ and sin 2� to be small, and should therefore be taken to be comparable [31]. This leads to a much
weaker bound than the more stringent one in [1]. In particular, the bound on �12Q from ✏K and �mK for sin↵ ⇠ sin 2�
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Degeneracy of Squarks 

• No strong degeneracy required! 

• Ex.:      =1.3 TeV,       =550 GeV,       =950 GeV 

• This can be generated by*: 
– Anarchy at the SUSY breaking mediation scale 

– SUSY renormalization group flow to the TeV scale 
– Can lead to modest level of degeneracy 
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Abstract
We consider the case where the quark mass hierarchy is determined by flavor dynamics

at a high scale. In such a case, under reasonable assumptions, RGE e↵ects yield a binomial
distributions under which there is a preference to obtain either light or heavy fermions.
Assuming a chemistry similar to that of our universe, and imposing the presence of a light
Higgs field the metastability bound implies that a probable spectrum will include either
six light quarks or five light ones and a single heavy one with Yukawa coupling close to
the instability bound, consistent with the observed top mass.

1 Introduction

The recent LHC and Tevaron data [9, 10, 11, 12, 13, 14] hint for the existence of the Higgs boson
with a mass of about 125 GeV. Such a light Higgs is in agreement with the indirect constraints
derived from precision electroweak data [], assuming no significant new physics contributions.

It is well known that if the Higgs is su�ciently lighter than the top quark, electroweak
minimum of the Higgs potential might be destabilized, assuming no new physics beyond the
SM is in e↵ect below the Planck scale []. More precisely, when combining the latest hints about
the Higgs mass with the current data about the top mass and strong coupling, it seems that
the SM vacuum is metastable [5]. In other words, it is not the true minimum of the Higgs
potential, yet its lifetime is longer than the age of the universe.

The interesting fact that the top quark mass is close to the anthropic bound stemming
from electroweak vacuum stability motivates us to find a mechanism that would account both
for the existence of light quarks and that of a heavy quark. This can be realized in the context
of a multiverse picture, where anthropic bounds constrain the parameter space.

According to the common wisdom, the multiverse may emerge from the combination of...
(eternal inflation, string landscape).

While light fermion masses are usually generated by flavor models, a heavy quark naturally
emerges as a result of the IR quasi fixed point of the SM renormalization group equations
(RGE) []. The latter generates an order 1 Yukawa coupling at the weak scale for a wide range
of initial Yukawa values at some high UV scale. The combination of these two mechanisms
allows us to construct observed pattern of quark masses.

2 Flavor Dynamics

Various mechanisms that address the flavor puzzle have been studied in the literature [1, 2, 3],
yet all of them can be summarized in a simple formula for the e↵ective Yukawa couplings:

y / ✏

Q
, (1)
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However is this consistence with the     
                LHC data??

The relentless march of experiment

Rakhi Mahbubani CERN Flavour vs LHC squark limits 1/14
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Mahbubani, Papucci, GP, Ruderman & Weiler, to appear.

• SM quark flavor symmetry

• two sources of breaking:

• Implication (2): bounds on degeneracy in SUSY alignment models

• viable SUSY spectra can be generated from complete anarchy at 
moderate mediation scales (SUSY QCD RGE)

• surprising mass hierarchies still viable, e.g.

CERN-PH-TH/2012-030

On the Universality of CP Violation in �F = 1 Processes

Oram Gedalia,1 Jernej F. Kamenik,2, 3 Zoltan Ligeti,4 and Gilad Perez1, 5

1Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
2J. Stefan Institute, Jamova 39, P. O. Box 3000, 1001 Ljubljana, Slovenia

3Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
4Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

5CERN, Theory Division, CH1211 Geneva 23, Switzerland

We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,
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We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,
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SUSY alignment models

SUSY predictions masses, splittings (degeneracy), mixing angles (e.g., )

& mixing said to imply that alignment not viable w/o degeneracy [arXiv:0903.2118]

Consider NP op.:

is a flavor-singlet

One invariant
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[Gedalia, Kamenik, ZL, Perez, arXiv:1202.5038]

Maybe surprising spectra viable: , ,

LHC searches using jets MET much less constraining without assuming that
1st–2nd generation squarks are degenerate [Mahbubani, Papucci, Perez, Ruderman, Weiler, to appear]

ZL — p.14

Important implications for LHC searches

On Universality of CPV in SU(3)Q breaking NP
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How do limits change?
Estimate:

‡ ≥ 1
m5

q̃

Decouple 6 dof:

∆ �m
max

m
max

= 1 ≠ 4≠1
5 ≥ 25%

TOO NAIVE!

Rakhi Mahbubani CERN Flavour vs LHC squark limits 6/14
6/14Limits a�ected by:

• squark multiplicity
• signal e�ciencies
• PDFs

Rakhi Mahbubani CERN Flavour vs LHC squark limits 7/14
7/14
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E�ciencies

Signal e�ciency falls very rapidly with decreasing squark mass
Below ≥ 600 GeV ‘‡ = 1

Rakhi Mahbubani CERN Flavour vs LHC squark limits 8/14
8/14
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Undecoupled 1st generation

Rakhi Mahbubani CERN Flavour vs LHC squark limits 12/14
12/14

In fact, all 4 flavor “sea” squarks can be light!

Mahbubani, Papucci, GP, Ruderman & Weiler, to appear.
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                      Summary

✦ Down alignment (& up anarchy?) is consistent & simple possibility 
(simple SUSY breaking models?).

✦ Probing up sector is invaluable => era of precision u-data.

✦ Despite lore very light squarks are consistent data (regardless of alignment).

29



0.05

0.1

0.3

0.5

0.7

1

3

10

100

400 600 800 1000 1200

500

1000

1500

2000

2500

3000

mUé 1,2 @GeVD

m
gé
@Ge

V
D

U
é
1,2 v. gé

s
slim

L = 1.04 fb-1

mN1
é = 0 GeV

0.01
0.050.1

0.3

0.5

0.7

1

3

10 100

400 600 800 1000 1200

500

1000

1500

2000

2500

3000

mDé 1,2 @GeVD

m
gé
@Ge

V
D

D
é
1,2 v. gé

s
slim

L = 1.04 fb-1

mN1
é = 0 GeV

0.05

0.1

0.3

0.50.71

3

10

100

400 600 800 1000 1200

500

1000

1500

2000

2500

3000

mQé 1,2 @GeVD

m
gé
@Ge

V
D

Q
é
1,2 v. gé

s
slim

L = 1.04 fb-1

mN1
é = 0 GeV

The U(2)/MFV limit

30


