

#### LHCb results now and tomorrow

M. Kreps on behalf of the LHCb Collaboration

Physics Department



#### Introduction



- LHCb running very well
- lacksquare In 2011 collected  $pprox 1~{
  m fb}^{-1}$
- lacksquare On track to collect 1.5  ${
  m fb^{-1}}$  this year
- Very high efficiency
- Practically all data we collect are good data
- Today all results still use 2011 data
- lacksquare 300  ${
  m pb}^{-1}$  we had month ago do not add so much to statistics from last year
- Less explanations of physics and analysis details, more on results and where we could get in future



#### LHCb Integrated Luminosity at 4 TeV in 2012



### Towards angle $\gamma$



- lacktriangle Angle  $\gamma$  important to define standard model
- Least precision up to now
- Measure  $A_{CP+} = 0.145 \pm 0.032 \pm 0.010$  (average of  $K^+K^-$  and  $\pi^+\pi^-$ )
- lacksquare Significance of the CP violation is  $5.8\sigma$
- One of the main systematic uncertainty from detector asymmetry will decrease with statistics



### Towards angle $\gamma$

WARWICK

- Decay  $B_s \to D_s K$  is one of the theoretically cleanest decay to extract angle  $\gamma$
- $\blacksquare$  Seen before by CDF and Belle, but not enough statistics to move towards  $\gamma$
- In 370  ${
  m pb^{-1}}$  we observe pprox 400 signal events
- Measure branching fraction of  $(1.90 \pm 0.12 \pm 0.13^{+0.12}_{-0.14}) \times 10^{-4}$
- With full 2011 dataset about 1200 events
- Working on time dependent analysis relevant for  $\gamma$  extraction





arXiv:1204.1237

## Measurement of $\phi_S$



- Test new physics contribution in  $B_s$  mixing box diagrams
- Lot of excitement few years back from Tevatron results
- About 21k  $B_s o J/\psi \phi$  events
- $\phi_S = -0.001 \pm 0.101 \pm 0.027$  $\Delta \Gamma_s = 0.116 \pm 0.018 \pm 0.006 \text{ps}^{-1}$
- Most precise measurements
- Dominated by statistics
- Largest systematic uncertainty on  $\phi_S$  from assuming no CPV in mixing or decay
- $\rightarrow$  Can be tested directly by data





LHCb-CONF-2012-002

## Measurement of $\phi_S$



- $\blacksquare B_s \to J/\psi \pi^+\pi^-$  decays provide alternative sample
- About 7.4k signal decays
- From angular study final state is basically pure CP-odd (> 97.7%)
- $\rightarrow$  Simplifies analysis (no angular fit needed)
  - Use  $\Delta\Gamma_s$  and  $\Gamma_s$  as found in  $B_s \to J/\psi \phi$
  - $\phi_S = -0.019^{+0.173}_{-0.174} \, ^{+0.004}_{-0.003}$
  - Again statistically limited
  - Many systematic uncertainties likely to decrease with increased statistics
  - Combined with  $B_s \rightarrow J/\psi \phi$  $\phi_S = -0.002 \pm 0.083 \pm 0.027$





arXiv:1204.5675

## $B_s^0$ decay width difference



- lacksquare Showed only one solution, but there is another  $-\Delta\Gamma_s$ ,  $\pi-\phi_S$
- lacksquare Resolve them using  $B_s o J/\!\psi K^+K^-$
- Interference between p- and s-wave key
- Physical solution should have decreasing phase between s- ad p-wave
- Solution with positive  $\Delta\Gamma_s$  is physical
- ullet  $\phi_S$  close to standard model





#### Direct CPV in $B \rightarrow hh$



- $\bullet$  Charmless two body decays proceed through gluonic penguins and  $b \to u$  trees
- Sensitivity to new physics (but screened by hadronic physics)
- $\bullet$  Comparing CPV in  $B_s\to K^-\pi^+$  to  $B^0\to K^+\pi^-$  can serve as model independent test
- LHCb measures  $A_{CP}(B^0 \to K^+\pi^-) = -0.088 \pm 0.011 \pm 0.008$
- For  $B_s$ ,  $A_{CP}(B_s \to K^-\pi^+) = 0.27 \pm 0.08 \pm 0.02$
- At  $3.3\sigma$  this is first evidence of CPV in  $B_s$  system





#### Effective lifetime in $B_s \to KK$



- $\bullet$   $K^+K^-$  is CP-even final state
- In the absence of CP violation (SM) it coincides with  $B_{sL}$  eigenstate
- Measurements with two exponentials difficult
- Measure effective lifetime in fit with single exponential
- Effective lifetime can be used with other measurements to constrain  $\Gamma_s$ ,  $\Delta\Gamma_s$  and CP violation
- Dedicated trigger to collect decay time unbiased sample
- au  $au_{eff} = 1.468 \pm 0.046 \pm 0.006$  ps
- Consistent with standard model





LHCb-CONF-2012-001

#### Time dependent $B \rightarrow hh$

- Next obvious step is to add flavour tagging
- In same framework do  $B^0 \to \pi^+\pi^-$  and  $B_s \to K^+K^-$
- $A_{\pi\pi}^{dir} = 0.11 \pm 0.21 \pm 0.03$   $A_{\pi\pi}^{mix} = -0.56 \pm 0.17 \pm 0.03$
- $A_{KK}^{dir} = 0.02 \pm 0.18 \pm 0.04$  $A_{KK}^{mix} = 0.17 \pm 0.18 \pm 0.05$
- Not yet competitive with B-factories on  $B^0$
- First time dependent CPV measurement on hadronic  $B_s$  decays











$$B^0 \to K^{*0} \mu^+ \mu^-$$

- EW  $b \rightarrow s\mu^+\mu^-$  transition
- In 2011 about 900 signal events
- Statistics larger than sum of all other experiments
- Rich set of observables from angular analysis ( $q^2$  dependent)
- First result on zero-crossing point  $q_0^2=(4.9^{+1.1}_{-1.3}){\rm GeV}^2/c^4$







# $B^0 \to K^{*0} \mu^+ \mu^-$

- With increased statistics include more observables
- Careful how angles are defined and treated, can make difference in meaning of observables
- Except of branching fraction pretty much statistically limited







# $B \to K^{(*)} \mu^+ \mu^- A_I$

- lacktriangle Measurement of asymmetry between  $B^+$  and  $B^0$
- Challenging due to need to reconstruct long lived  $K_s$
- Measurement limited by the statistics on decays with  $K_s$
- Possibly larger systematic uncertainty from tracking as final states have different number of tracks
- All measurements in this class of transitions consistent with SM
- Possible hint of departure from zero for  $A_I$  in  $B \to K \mu^+ \mu^-$





# Other $b \to s(d)\mu^+\mu^-$



- $B_s \to \phi \mu^+ \mu^- \text{ governed by } b \to \mathfrak{F}$   $s\mu^+ \mu^- \text{ transition}$
- lacktriangle With  $1~{
  m fb^{-1}}$  we measure total and  $\frac{8}{6}$  differential branching fraction
- See  $\approx 77$  signal events in full  $q^2$  range
- Branching fraction measured to be  $(0.78 \pm 0.10 \pm 0.06 \pm 0.28) \times 10^{-6}$
- For the first time see  $b \rightarrow d\mu^+\mu^-$  transition
- Observe  $B^+ \to \pi^+ \mu^+ \mu^-$  with significance of  $5.2\sigma$
- $\mathcal{B}(\pi^{+}\mu^{+}\mu^{-}) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$





## Radiative decays

- WARWICK arXiv:1202.6267 LHCb-CONF-2012-004
- lacktriangle FCNC EM penguin transitions sensitive to  $V_{ts}$
- Could be significantly enhanced by new physics
- While  $B^0 \to K^* \gamma$  relatively well know, corresponding  $B_s \to \phi \gamma$  only purely measured
- Measuring relative branching fractions between  $B^0$  and  $B_s$   $R=1.12\pm0.08^{+0.06}_{-0.04}{}^{+0.09}_{-0.08}(f_s/f_d)$
- For  $B^0 \to K^* \gamma$  measure CP asymmetry of  $A_{CP} = 0.008 \pm 0.017 \pm 0.009$
- Most precise measurements
- lacktriangle For  $A_{CP}$  systematic uncertainties should scale with increased statistics







$$B_s \to \mu^+ \mu^-$$

WARWICK
PRL 108, 231801 (2012)
LHCb-CONF-2012-017

- Theoretically well controlled decay
- Effective hammer to new physics models
- LHCb limit  $< 4.5 \times 10^{-9}$  at 95% C.L. (expected  $3.4/7.2 \times 10^{-9}$ )
- LHC wide limit  $< 4.2 \times 10^{-9}$  at 95% C.L.
- Getting close to SM prediction
- Feasible to get down to SM with this years data
- Once we see signal, normalization uncertainty becomes issue
- lacktriangle Input to measurement of  $f_s/f_d$  crucial





# $D^0 \to \mu^+ \mu^-$

- Complement to B decays
- Testing down type quarks in loop
- GIM and CKM suppression gives strong suppression in SM
- Large enhancement possible in NP models
- lacktriangle Significant correlation to  $D^0$  mixing in NP models
- Using  $D^{*+}$  tagged sample
- Upper limit  $1.3 \times 10^{-8}$  at 95% C.L.
- About order of magnitude better then Belle limit





## **Upgrade**

- WARWICK
- lacksquare Currently running at constant luminosity of  $4 imes 10^{32}$  cm $^2$ s $^1$
- lacksquare By 2018 we expect to have 5  ${
  m fb}^{-1}$

Current trigger limited by need to decrease rate to 1 MHz based on

calorimeter and muon system

- Simple increase of luminosity does not help
- Upgrade for more flexible first stage trigger



+ New front-end electronics and read-out network









CERN-LHCC-2012-007

### **Upgrade**



- Aim to collect 50  $fb^{-1}$  at rate of 5  $fb^{-1}$  per year
- Projections based on results on 2011 data
- Showing only statistical uncertainties in table (from Framework TDR)
- Expect to get close to the theoretical uncertainties

| Type           | Observable                                                                      | Current                   | LHCb                  | Upgrade               | Theory                |
|----------------|---------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|
|                |                                                                                 | precision                 | 2018                  | $(50  {\rm fb}^{-1})$ | uncertainty           |
| $B_s^0$ mixing | $2\beta_s \; (B_s^0 	o J/\psi \; \phi)$                                         | 0.10 [9]                  | 0.025                 | 0.008                 | $\sim 0.003$          |
|                | $2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$                                      | 0.17 [10]                 | 0.045                 | 0.014                 | $\sim 0.01$           |
|                | $A_{ m fs}(B^0_s)$                                                              | $6.4 \times 10^{-3}$ [18] | $0.6 \times 10^{-3}$  | $0.2 \times 10^{-3}$  | $0.03 \times 10^{-3}$ |
| Gluonic        | $2\beta_s^{\text{eff}}(B_s^0 	o \phi\phi)$                                      |                           | 0.17                  | 0.03                  | 0.02                  |
| penguin        | $2eta_s^{	ext{eff}}(B_s^0	o K^{*0}ar K^{*0})$                                   |                           | 0.13                  | 0.02                  | < 0.02                |
|                | $2eta^{ m eff}(B^0	o\phi K^0_S)$                                                | 0.17 [18]                 | 0.30                  | 0.05                  | 0.02                  |
| Right-handed   | $2eta_s^{	ext{eff}}(B_s^0	o\phi\gamma)$                                         | 7-                        | 0.09                  | 0.02                  | < 0.01                |
| currents       | $	au^{	ext{eff}}(B^0_s	o\phi\gamma)/	au_{B^0_s}$                                | -                         | 5%                    | 1%                    | 0.2%                  |
| Electroweak    | $S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$                 | 0.08 [14]                 | 0.025                 | 0.008                 | 0.02                  |
| penguin        | $s_0A_{ m FB}(B^0	o K^{*0}\mu^+\mu^-)$                                          | 25%[14]                   | 6%                    | 2 %                   | 7%                    |
|                | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2}/c^4)$                             | 0.25 [15]                 | 0.08                  | 0.025                 | $\sim 0.02$           |
|                | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 25% [16]                  | 8%                    | 2.5%                  | $\sim 10\%$           |
| Higgs          | ${\cal B}(B^0_s	o\mu^+\mu^-)$                                                   | $1.5 \times 10^{-9}$ [2]  | $0.5 \times 10^{-9}$  | $0.15 \times 10^{-9}$ | $0.3 \times 10^{-9}$  |
| penguin        | ${\cal B}(B^0	o\mu^+\mu^-)/{\cal B}(B^0_s	o\mu^+\mu^-)$                         | · ·                       | $\sim 100\%$          | $\sim 35\%$           | $\sim 5\%$            |
| Unitarity      | $\gamma \ (B \to D^{(*)}K^{(*)})$                                               | ~ 10-12° [19, 20]         | 4°                    | 0.9°                  | negligible            |
| triangle       | $\gamma \ (B_s^0 \to D_s K)$                                                    |                           | 11°                   | $2.0^{\circ}$         | negligible            |
| angles         | $eta \; (B^0 	o J/\psi \; K_S^0)$                                               | 0.8° [18]                 | 0.6°                  | $0.2^{\circ}$         | negligible            |
| Charm          | $A_{\Gamma}$                                                                    | $2.3 \times 10^{-3}$ [18] | $0.40 \times 10^{-3}$ | $0.07 \times 10^{-3}$ | 523                   |
| CP violation   | $\Delta A_{CP}$                                                                 | $2.1 \times 10^{-3}$ [5]  | $0.65\times10^{-3}$   | $0.12\times10^{-3}$   | 844                   |

#### **Conclusions**



- LHCb is running very well
- lacktriangle Results shown today mostly use 1 fb<sup>-1</sup>
- lacktriangle On track to increase statistics to 2.5  ${\rm fb^{-1}}$  by end of this year
- Already now putting significant constraints on new physics
- No major limitation from systematic effects foreseen in this decade
- 20 talks at ICHEP, many of them with brand new results