

Untersuchung von strahlenharten Multigeometry Pixelsensoren

für den zukünftigen CMS Spurdetektor im Rahmen der HPK-Kampagne

Kurzeinleitung

- Das CMS-(Compact Muon Solenoid)-Experiment ist eines der 4 Hauptexperimente am LHC (Large Hadron Collider) und liefert wichtige Ergebnisse zur Entdeckung "neuer Physik" ~> verweis
- Die Wechselwirkungsintensität (engl. Luminosity) des LHC wird in mehreren Phasen erhöht. Dadurch werden neue Anforderungen wie höhere Strahlungshärte und höhere Auflösung (engl. granularty) an alle Detektorkomponeten gestellt
 - Umfangreiche Forschungs- & Entwicklungsprogramme an allen Experimenten ~>T63
- Für den CMS Spurdetektor: "HPK*-Campaign":
 - Untersuchung verschiedener Silizumsubstrate (Float Zone, Magnetic Czochralski und Epitataxisches Silizium);
 - verschiedener Dicken (**320, 200, 120, 100, 50** μ m)
 - und verschiedener Prozess- und Isolationstechnologien (p-in-n (N), p-in-n pstop (P), p-in-n pspray (Y))
 - produziert von einem Hersteller!!!

 - Namensschema: Material + Dicke + Technologie

Multi-Pixel

• 12 regions (3 ratios w/p, 2 diff. pixel lengths, 2 diff. Bias)

region	_ 12 _	11	10	9	8	7	6	5	4	3	2	1
p+/n+	18	18	23	23	28	28	18	18	23	23	28	28
alu	31	31	36	36	41	41	31	31	36	36	41	41
length alu	1171	1171	1171	1171	1171	1171	2421	2421	2421	2421	2421	2421
pitch	80	80	100	100	120	120	80	80	100	100	120	120

Pixel

Bias Ring

Guard Ring

Isolation

13/02/12

Besonderheiten

- Teststrukturen für Sensoren des innersten Berech des zukünftigen Spurdetektors "PT-model"
- Einzige Teststruktur innerhalb der Kampagne mit Punch through Bias-Widerstand
 - Besonders Augenmerk bei der Auswertung auf den Vergleich der beiden Bias-Methoden

Messungen

- C/V und I/V Kurve des Biasrings
- Zwischenpixelwiderstand und -kapazität
- Pixelstrom und -kapazität
- Biaswiderstand
- Gemessen wurden bisher 19 FZ,
 8 Mcz und 6 Epi Sensoren von allen verfügbaren Dicken und Technologien
 - Gute Übersicht über die Eigenschaften der unbestrahlten Sensoren!

C/V Biasring

I/V Biasring

Durchbruchsspannung
 Typische Werte:
 FZ320 > 1000V
 FZ200, M200 > 700V
 FZ120 > 500V
 E100 > 500V
 E50 > 350V

Keine Abhängigkeit von der Technologie !!!

- $C_{PT} > C_{PS}$ $C_{120\mu m} > C_{100\mu m} > C_{80\mu m}$
- C_{lang} ~ 2*C_{kurz}

13/02/12

$\mathbf{C}_{\text{pixel}}$

Pixel

- $I_{PT} > I_{PS}$ $I_{120\mu m} > I_{100\mu m} > I_{80\mu m}$

 Technologien zeigen gleiches Verhalten

Zusammenfassung

- Alle untersuchten Mpix-Sensoren weisen eine gute Qualität auf
- Deutliche Unterschiede der elektrischen Eigenschaften f
 ür die verschiedenen Bias-Methoden
- Mpix Sensoren werden derzeitig mit Protonen und Neutronen bestrahlt und anschließend erneut gemessen
- Parallel zu den elektrischen Messungen sind Teststrahlmessungen vorgenommen und Simulationen durchgeführt worden

Anhang

1. HPK[#] Campaign (1)

• To achieve this goal **one wafer layout** was designed and produced with different substrates, thicknesses and different production technologies *but* with same production process from **one manufacturer**! **(Hamamatsu)**

technology / material	FZ- 320μm	FZ- 200μm	FZ- 200μm*	FZ- 120μm	FZ- 120μm*	MCz- 200µm	Epi- 100μm	Epi- 50µm	
P-in-N	6	6	6	6	6	6	6	6	
N-in-P pstop	6	6	6	6	6	6	6	6	
N-in-P pspray	6	4	6	4	6	6	6	6	
2'nd metal P -in- N			6	FZ – Floating Zone silicon					
2'nd metal N -in- P pstop			6	MCz – M agnetic Cz ochralski silicon					
2'nd metal N -in- P pspray			6	Epi – EPI taxial silicon					

* Physical thickness is $320\mu m$, active thickness is reduced by a "Deep Diffusion" process

In total **158** wafers have to be qualified, irradiated and re-qualified.

1. HPK Campaign (3)

Expected fluences at 3000fb⁻¹ for CMS

Radius [cm]	Protons [10 ¹⁴ n _{eq} /cm²]	Neutons [10 ¹⁴ n _{eq} /cm ²]	Sum [10 ¹⁴ n _{eq} /cm²]	Ratio P/N
5	130	10	140	13
10	30	7	37	4.3
15	15	6	21	2.5
20	10	5	15	2
40	3	4	7	0.75

Corresponding to simulated fluences

- Single and mixed particle irradiation for 5 radii
- Electrical measurements after each irradiation
- Several beam tests
- Annealing studies after irradiation

n-type bulk Back n ⁺diffusion

no strip isolation due to electron accumulation layer p+stop p+spray Al strip(AC) Al strip(AC) Al strip(AC) + electron + electron + p+ stop + p+ spray + p

Backside metallisation

Fig. 1. A cross section along the direction of the strips of the FOXFET structure.

Operation and radiation resistance of a FOXFET biasing structure for silicon strip detectors

M. Laakso Particle Detector Group, Fermilab, Batavia, IL, USA; and Research Institute for High Energy Physics (SEFT), Helsinki, Finland

P. Singh, E. Engels, Jr. and P.F. Shepard Department of Physics and Astronomy, University of Pittsburgh, Pattsburgh, PA, USA

> F. Hartmann, Evolution of Silicon Sensor Technology in Particle Physics, STMP 231 (Springer, Berlin Heidelberg 2009), DOI 10.1007/ 978-3-540-44774-0