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A single top quark after July 4
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Outline

‣ The interest of single top quark events

‣ What can you do with single top?

‣ CC vertex, Vtb, b-density,...

‣ Theoretical aspects in production and decay of single top

‣ and connections (spin, virtuality,.)
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How to make a single top?

‣ In SM: through charged current interaction

‣ Interesting because:

‣ strength (Vtb in particular)

‣ left-handedness, i.e. spin

‣ Effect of W-virtuality?

‣ Note: channels start mixing at sufficiently high order
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s-channel: 
timelike W

t-channel: 
spacelike W

Wt channel: real W
4 pb @  LHC7

62 pb @  LHC7

10 pb @  LHC7
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Single top production in a nut-shell

‣ s channel 1 pb at Tevatron, Wt 
negligible there

‣ s-channel like Drell-Yan, t-channel 
like Deep-Inelastic Scattering

‣ QCD corrections moderate

‣ At NLO, no box diagrams

‣ Test different kinds of new physics
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LO at αw2 for s and t channel, αwαs for Wt channel
Cross section:

 3 pb at Tevatron
300 pb at LHC14  (60 pb) at LHC7

‣ 60pb at LHC14, s-channel negligible 
there

‣ NLO QCD corrections about 40%

‣ Tricky at LHC, hard to distinguish 
from top pair production. More on 
this later.



Discovery, still not long ago
‣ Even though the cross sections at the Tevatron are not that much 

smaller than for pair production, discovery of single top production took 
much longer (2009) than for pair production (1995)
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Experimental status: Tevatron

‣ D0: 5.5σ for t-channel, no separate s-channel discovery

‣ CDF: t-channel a bit low, s-channel a bit high

‣ Background fiendishly difficult

‣ Full dataset, and D0+CDF combination await
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D0, through Ann Heinson, major supplier of
single top Feynman diagrams..



Finding single tops
‣ Why was it so hard to find?

‣ Backgrounds large in size and similar in shape compared to signal

‣ especially Wj, tt and multijet backrounds

‣ Cut & count did not work at the Tevatron: needed multi-variate 
techniques 

‣ With 1 charged lepton, >1 jets, large missing E,   S/B = 1/185

‣ After b-tagging, S/B = 1/20, still tough

‣ Then enhance signal with multi-variate techniques
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Experimental status: LHC

‣ Single top process established at LHC

‣ Inclusive cross sections in good agreement so far

‣ But backgrounds remain tough
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Things one can do with single top

‣ process is sensitive to different New Physics/channel (FCNC (t-
channel), W’ resonance (s-channel), non-4 fermion operators 
(Wt-channel)

‣ It helpt determine (t-channel) the high-scale b-quark PDF

‣ It tests electroweak production of top, through left-handed 
coupling

‣ It allows measurement of  Vtb per channel. 

s-channel: 
timelike W

t-channel: 
spacelike W

Wt channel: real W
4 pb @  LHC7

62 pb @  LHC7

10 pb @  LHC7
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s & t   fallacy
‣ One might think: since these cross sections are proportional to |Vtb|2, we 

can just extract this value easily.

‣ But since

‣ has recently been measured by D0 to be about 0.9, we cannot use 

‣ so easily. A first attempt at doing it properly

‣ assume 4x4 CKM matrix (to avoid unitarity), take efficiencies for other 
flavor (mis)tags into account

‣ Vtb = 1  well outside 95% CL contour
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R =
|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
Alwall et al; Lacker et al

|Vtd|2 + |Vts|2 � |Vtb|2
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Figure 10: The two-dimensional constraint on |Vts| and |Vtb| within the ‘4SMTL
method’ using N2jets

1bjet = 84.3 ± 26.8 and R = 0.90 ± 0.04 together with constraints
on |Vud|, |Vus|, |Vub|, |Vcd|, |Vcb|, and B(W → !ν!) as explained in the text.
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Single top at NLO, on-shell

‣ NLO corrections known since long. Inclusive

‣ t-channel [Bordes, van Eijk; Stelzer, Willenbrock Sullivan]

‣ s-channel [Smith, Willenbrock]

‣ Wt-channel [Zhu, Cao]

‣ Fully differential

‣ s&t: [Harris, EL, Phaf, Sullivan, Weinzierl]

‣ Wt: [Giele, Keller, EL; Frixione, EL, Motylinski, Webber, White; Campbell, Tramontano]

‣ LO + Parton shower is not like NLO, so this was necessary.
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Electroweak & SUSY-QCD corrections

‣ (Wt,t)-channel / (s,t)-channel 

‣ EW correction not so small (esp. for pT)

‣ SUSY-QCD corrections much smaller
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EW % correction in SM SUSY % correction in MSSM

Beccaria, Carloni-Calame, 
Mirabella, Piccinini, Renard, 
Verzegnassi
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FIG. 3: Left Panel: We plot the LO (that is tree level) contribution and the NLO (that is tree level plus

O(α3)) corrections to the transverse momentum distribution.

Right Panel: We plot the percentage contribution of the O(α3) corrections to the transverse momentum

distribution; that is δ = NLO−LO
NLO

× 100.

No cuts are imposed. Computation in the Standard Model framework
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FIG. 4: Left Panel: We plot the LO (that is tree level) contribution and the NLO (that is tree level plus

O(α3)) corrections to the invariant mass distribution.

Right Panel: We plot the percentage contribution of the O(α3) corrections to the invariant mass distribution;

that is δ = NLO−LO
NLO

× 100.

No cuts are imposed. Computation in the Standard Model framework
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FIG. 8: (a) We plot the LO (that is tree level) contribution and the NLO (that is tree level plus O(α3)

plus SUSY QCD) corrections to the invariant mass distribution.

(b) We plot the percentage contribution of the O(α3) plus SUSY QCD corrections to the invariant mass

distribution; that is δ = NLO−LO
NLO

× 100.

(c) We plot the percentage contribution of the O(α3) corrections to the invariant mass distribution; that is

δ = O(α3)
NLO

× 100.

(d) We plot the percentage contribution of the SUSY QCD corrections to the invariant mass distribution;

that is δ = SUSY QCD
NLO

× 100.

No cuts are imposed. Computation in the SU1 point
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Marcorini, Moretti, Panizzi; Bardin, 
Bondarenko, Kalinovskaya,Kolesnikov, 
von Schlippe

t-channel

/



Threshold resummation for single top; beyond NLO..

‣ .. but that is not yet NNLO. For single top, based on all-order resummation 

‣ There are two varieties of such predictions

‣ all order predictions

‣ Benefit: all-order, systematic, smaller scale uncertainty, but some ambiguities

‣ after expanding resummed to second order, get NNLOapprox

‣ Instructive, already less scale uncertainty than NLO, no all-order ambiguities

⇥resum
=

n

�2
sC0

| {z }

LL,NLL

+�3
sC1

| {z }

NNLL

o

⇥

exp

h

Lg1(�sL)
| {z }

LL

+ g2(�sL)
| {z }

NLL

+�sg3(�sL)
| {z }

NNLL

+ . . .
i

14



Resummation rules of thumb

1. Near edge of phase space: Sudakov suppression

2. But hadronic cross sections increase due to QCD resummation

3. Factorization scale uncertainty smaller in resummation than in fixed 
order

Sterman, Vogelsang

exp(�aL2)

�q/P (N,µF ) � e�(A ln N+B)ln µF +...
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⇥partonic, NLO = 1 + �
�
ln2 N � (A lnN + B)lnµF

�

�partonic, resum = e� ln2 N��(A ln N+B)ln µF +...
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�

exp(� ln2 N)
�2 = exp(+ ln2 N)

N ��



Threshold resummation

‣ Present status is NNLL 

‣ Caveat: different thresholds can be used

‣ e.g. 

‣ L = ln(threshold condition). The two calculations use slightly different 
versions of 3. Small approximate NNLO effects in t-channel. 

‣ For Wt channel, another 14% on top of NLO
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Kidonakis; Li, Wang, Zhang, Zhu



Single top and b-quark density
‣ Only if one calculates with 5 dynamical/active partons

‣ i.e. contribute to evolution of PDF’s in DGLAP equation, and in αs. 

‣ In 4-flavor scheme, neither top nor bottom are partons

‣ NLO corrections to this proess in 4F scheme computed

‣ Both are legal, equal to sufficiently high order. Obvious differences

‣ order in perturbation theory, easier to reach NLO in 5-flavor scheme

‣ at LO, predictions for “spectator” anti-b distribution
17

LO part of NLO

LO

Campbell, Frederix, Maltoni, Tramontano



b-density
‣ Extracting b-density from single top important for high-scale LHC processes 

‣ bb -> Higgs tests, high-pT jets, etc

‣ must be done at NLO for use in modern applications

‣ In practice, this would be done by adding it to a global analysis data set
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‣ There is a more “theoretical way” to determine b-density

‣ Determine, from global fits, a 4-flavor set of (MSbar) PDF’s

‣ Choose a matching scale (e.g. mb), and use (NNLO) matching conditions

‣ Then use 5-flavor DGLAP to evolve to scales above mb

‣ Comparison will be interesting

ABKM09, JR09

Buza, Matouine, Smith, van Neerven

u(4), d(4), s(4), c(4), g(4)

b(5)|µ=mb = fb(u(4), d(4), . . .)|µ=mb , etc



4 vs 5 flavor scheme

‣ At NLO, satisfying agreement, better at high energy 

‣ Careful analysis shows

‣ 2-> 3 factorizes into “collinear logarithm” x reduced cross section

‣ “collinear logarithm” large at large x, so less important for higher 
collision energy
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Campbell, Frederix, Maltoni, Tramontano

Figure 8: Total cross section at NLO for the 2 → 2 and 2 → 3 at the Tevatron (top), LHC 10 TeV
(bottom-left) and LHC 14 TeV (bottom-right).

5. Conclusions

The recent discovery of single top production at the Tevatron opens the door to more exten-

sive studies of this final state both there and at the LHC. In this paper we have presented

an up-to-date and systematic study of both the cross sections that should be expected

in this channel and their associated theoretical uncertainties. Cross sections have been

computed at NLO accuracy in the strong coupling, starting from two Born approximations

corresponding to 2 → 2 and 2 → 3 scattering processes. Our best predictions for t-channel

single top cross sections in the 2 → 2 and 2 → 3 schemes, with mt = 172 ± 1.7 GeV,

mb = 4.5 ± 0.2 GeV and computed using the CTEQ6.6 PDF set, are:

σNLO
t−ch(t + t̄) 2 → 2 (pb) 2 → 3 (pb)

Tevatron Run II 1.96 +0.05
−0.01

+0.20
−0.16

+0.06
−0.06

+0.05
−0.05 1.87 +0.16

−0.21
+0.18
−0.15

+0.06
−0.06

+0.04
−0.04

LHC (10 TeV) 130 +2
−2

+3
−3

+2
−2

+2
−2 124 +4

−5
+2
−3

+2
−2

+2
−2

LHC (14 TeV) 244 +5
−4

+5
−6

+3
−3

+4
−4 234 +7

−9
+5
−5

+3
−3

+4
−4

The first two uncertainties are computed according to the procedure outlined in Section 2

and we have used CTEQ6.6 in order to provide the most conservative predictions. These

results are also depicted in the plots of Figure 8. The third and fourth uncertainties are

related to the top mass and bottom mass uncertainties, respectively.

As the results in the two schemes are in substantial agreement and a priori provide

equally accurate though different theoretical descriptions of the same process, one could try

to combine them. We think that this is a legitimate approach (once correlations among the

theoretical errors, scale and PDF, are taken into account), however, we prefer to present

the predictions separately.

In addition, we have also presented cross sections for the production of a fourth gener-

ation b′, both in association with a top quark and with its partner t′. These cross sections

set useful benchmarks for future searches, particularly at the LHC where very heavy quarks

with sizeable mixing with third generation quarks or very large mass splittings would be

preferentially produced from t-channel production rather than in pairs via the strong in-

teraction.

– 11 –

Scale PDF mt mb

Maltoni, Ridolfi, Ubiali

Thus, at leading order the cross section (or better, the contribution to F2) from t production

is simply proportional to the b parton distribution function. From Fig. 11 we conclude that

the fraction of momentum carried by the b quark is peaked at larger value as the virtuality

of the produced top increases.
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Figure 11. Distributions of events as a function of the proton momentum carried by the incoming
b quark in single top production at LHC in the 5F scheme, leading order.

√
S = 14 TeV and

Mt = 172.5 (left), Mt = 400 GeV (centre) and Mt = 800 GeV (right). Input PDF: NNPDF21 (LO).

In order to interpret correctly the scale dependence of the curves in Fig. 10 we consider

the collinear limit of the massive leading–order computation. The full expression of the LO

partonic differential cross–section dσ̂4F
2 /dt is given by Eqs. (A.8,A.9,A.10) with M = Mt,

m = mb, gR = 0 and gL = gW /
√
2. This specific term in the total cross sectio is the only

one which has a pole in t = 0 in the small mb limit. Taking the limit mb → 0 and keeping

only terms which give rise to the collinear singularity we find

dσ̂4F
2

dt
=

3αsg2WCF

64(s +Q2)3

[

(M2
t +Q2)2 −M2

t (s+Q2)−Q2(s +Q2) + (s+Q2)2/2

t−m2
b

]

+ non singular terms. (5.21)

Hence, in this limit,

∫ t+

t
−

dt
dσ̂4F

2

dt
=

3αsg2WCF

128(s +Q2)3

[

2M4
t + 4Q2M2

t − 2(s +Q2)M2
t + s2 +Q4

]

log

[

s

m2
b

(

1−
M2

t

s

)2
]

. (5.22)

With the definition Eq. (5.19), it is immediate to recognize that Eq. (5.22) can be written

as
∫ tmax

tmin

dt
dσ̂4F

2

dt
=

3αsg2WCF

64(s +Q2)

z2 + (1− z)2

2
log

Q2(z)

m2
b

, (5.23)

with

Q2(z) =
(M2

t +Q2)2

M2
t + (1− z)Q2

(1− z)2

z
. (5.24)

This result can be interpreted as the scale corresponding to the collinear splitting not being

Mt or
√

M2
t +Q2, but rather the dynamical scale Q(z). As we will comment at length in
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Distributions in t-channel, 4F vs 5F 

‣ Also for distributions, good agreement

‣ about 10% devilations

‣ Even for anti-bottom (only at tree-level in 5F NLO) in fairly good 
agreement (max 20%)
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Campbell, Frederix, Maltoni, Tramontano

Rikkert Frederix, University of Zurich

Distributions

Jet defined by: pT>15 GeV, ΔR > 0.7
Some differences, but typically of the order of ~10% in the regions 
where the cross section is large
Shapes are very similar to LO predictions (not shown)
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Single top plus bosons: t+Z,h
‣ t+Z: 

‣ significant gauge cancellations

‣ some sensitivity to t-Z coupling

‣ t+h

‣ very small cross section (few fb), much 
destructive interference between radiation off 
W and off top.

21

Ellis@Top2012
Barger, McKaskey, Shaughnessy
Maltoni, Stelzer, Willenbrock



Wt-channel at NLO

• Interference with pair production (15 times bigger at 14 TeV) 

‣ In earlier calculations, subtract in calculation/cut on invariant mass

‣ Important cut: veto hard second b-jet suppress tt

‣ All NLO processes in MCFM

Frixione, EL, Motylinski, Webber, White

+ non-resonant diagrams

Campbell, Ellis, Tramontano
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Address in context of NLO + parton shower

Among real corrections: 



Matching NLO to parton showers

‣ Issue: double counting

‣ emission from NLO and PS, should be counted once

‣ virtual part of NLO and Sudakov form factor should not overlap

‣ some freedom in this:

‣ MC@NLO matches to HERWIG(++) angular ordered showers (PYTHIA 
initial state). 

‣ POWHEG insists on having positive weights,  exponentiates complete real 
matrix element (PYTHIA or HERWIG)

‣ Automatization: POWHEG Box, aMC@NLO

23

Frixione, Webber; Nason

Nason; Frixione, Oleari

tt̄ production

Good agreement for all observables considered. There are sizable differences that can be

ascribed to different treatment of higher terms. But more investigation needed (different

scale choices, no truncated shower, different hard/soft radiation emission,. . . ).

Carlo Oleari Matching NLO Calculations with Parton Shower: the POsitive-Weight Hardest Emission Generator 21

For most observables, good agreement
(more anon..)



s&t channel in MC@NLO & POWHEG

‣ Very good agreement

‣ pT of top in t-channel

‣ summed pT of all partice in hardest jet

24

Frixione, EL, Motylinski, Webber ’05
Alioli, Nason, Oleari, Re ’09

Figure 7: Comparisons between POWHEG, MC@NLO and NLO results for t-channel top production at
the LHC pp collider.
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Figure 7: Comparisons between POWHEG, MC@NLO and NLO results for t-channel top production at
the LHC pp collider.
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Single top in Wt mode meets tt..

• Serious interference with pair production (same problem in Ht) 

‣ What can one do in event generation? Prototypical for other cases.

‣ Can one actually define this process?

‣ Important cut: veto hard second b-jet suppress tt

Frixione, EL, Motylinski, Webber, White

+ non-resonant diagrams
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Can we define  Wt  as a process?

• Two approaches in MC@NLO  (now also in POWHEG (Re))

‣ I. Remove resonant diagrams (DR) 

‣ II.  Construct a gauge invariant, local counterterm: diagram 
subtraction (DS)

‣ DS - DR is measure of interference

Momentum reshufling

When the NLO computation is then matched to parton showers according to the

MC@NLO prescription, the above equation must be modified by the subtraction of
MC counterterms. We can choose to absorb these in Ŝαβ, because this is the only

piece that contains leading soft and collinear singularities. Thus the schematic form
of eq. (4.8) applies at both the NLO and MC@NLO levels. In this notation, the DR
cross section corresponds to:

dσ(DR) = dσ(2) +
∑

αβ

∫
dx1dx2

2x1x2S
LαβŜαβdφ3 , (4.9)

i.e. there are now no terms Iαβ or Dαβ, as all doubly resonant diagrams have been

removed from the amplitude. As mentioned previously, this cross section violates
gauge invariance; this issue will be discussed in sect. 5.2.

Starting from eq. (4.8), we also define the DS cross section. This amounts to

writing:

dσ(DS) = dσ − dσsubt , (4.10)

where dσsubt is designed to remove numerically the doubly-resonant contribution.

This may be achieved locally by defining

dσsubt =
∑

αβ

∫
dx1dx2 Lαβ dσsubt

αβ ; (4.11)

dσsubt
αβ =

1

2s
D̃αβdφ3 , (4.12)

such that the quantity
Dαβ − D̃αβ (4.13)

will vanish when M2
b̄W

≡ (k + k2)2 → m2
t . Note that Dαβ and D̃αβ themselves will,

in such a limit, either diverge, if Γt = 0, or have a Breit-Wigner-like peak, if Γt $= 0.
The DS cross section in eq. (4.10) can now be re-written in the same form as eq. (4.9):

dσ(DS) = dσ(2) +
∑

αβ

∫
dx1dx2

2x1x2S
Lαβ

(
Ŝαβ + Iαβ + Dαβ − D̃αβ

)
dφ3 . (4.14)

One sees that the difference between the DR and DS cross sections has the form:

dσ(DS) − dσ(DR) =
∑

αβ

∫
dx1dx2

2x1x2S
Lαβ

(
Iαβ + Dαβ − D̃αβ

)
dφ3 , (4.15)

and thus is composed of a contribution from the interference term, and of the differ-

ence between the subtraction term and the true doubly resonant contribution to the
NLO cross section.

Our aim is now to construct a gauge-invariant subtraction term, such that the
difference Dαβ − D̃αβ is as close to zero as possible. Note also that requiring the
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• Compare 

‣ Interference effects quite small, in general

‣ Next question: can one isolate Wt?
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1

p2 + i⌅
�⌅ �i2⌥⇤+(p2)

1

Frixione, EL, Motylinski, Webber, White

26



DR vs DS

27

natural constraint in an event generator context than in a parton-level, fixed-order

computation. In table 2 we present the results for the DR and DS total cross sections,

MC@NLO NLO

σ(DR) σ(DS) σ(LO) K(DR) K(DS) σ(DR) σ(DS) σ(LO) K(DR) K(DS)

p(veto)
T = 10 GeV

34.66 33.89 26.60 1.30 1.27 35.05 34.74 34.67 1.01 1.00

p(veto)
T = 30 GeV

41.86 40.74 31.85 1.31 1.28 39.93 39.67 34.67 1.15 1.14

p(veto)
T = 50 GeV

44.61 42.92 33.71 1.32 1.27 42.81 42.00 34.67 1.23 1.21

p(veto)
T = 70 GeV

45.63 43.65 34.31 1.33 1.27 44.41 42.90 34.67 1.28 1.24

p(veto)
T = ∞

46.33 44.12 34.67 1.34 1.27 46.33 44.12 34.67 1.34 1.27

Table 2: Results for the total DR, DS, and leading order cross sections (in pb), obtained

with MC@NLO (five left columns) and our pure-NLO parton level computation (five right

columns). See the text for details. The notation p
(veto)
T = ∞ denotes no veto at all.

obtained with MC@NLO and with our pure-NLO parton level computation. We also

give the results (denoted by σ(LO)) obtained in the two frameworks by keeping only
LO matrix elements. In the case of MC@NLO, σ(LO) is thus equal to what one would

get by simply running HERWIG standalone8. The table finally reports the values of
the ratios of NLO over LO cross sections:

K(DR) =
σ(DR)

σ(LO)
, K(DS) =

σ(DS)

σ(LO)
. (5.3)

In the fixed-order computation at LO, there is simply no second-hardest b quark, and
σ(LO) is therefore independent of the value of p(veto)

T . On the other hand, in an MC

context the initial-state b quark entering the hard partonic process at LO eventually
results, because of parton showers, in the generation of a B hadron. Therefore, σ(LO)

computed with an event generator does depend on p(veto)
T . The interesting thing about

this dependence is that it appears to be the same as that obtained at the NLO, as
can be inferred from the basically constant values of K(DR) and K(DS) obtained with

MC@NLO. This is not the case for the parton-level fixed-order computation, where

8In fact, Wt production is not implemented in HERWIG. We simply computed the LO matrix
elements, and used the Les Houches interface [33] to give HERWIG the hard events, as in the case
of MC@NLO.
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Can/should we isolate Wt?

White, Frixione, EL, Maltoni‣ Answer subject to cuts. Some choices:

‣ Cuts to isolate Wt

‣ Cuts to suppress Wt and tt as background to H->WW

‣ Conclusion:  

‣ Yes, can consider separate NLO corrections for tt (70%) and for Wt  (40%)
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POWHEG and MC@NLO: Wt case

‣ Very close

‣ Note difference with NLO due to PS 
29

mass of the emitting quark. The lower bound on the transverse momentum for the emission

off a massless emitter (u, d, s) has been set to the value pmin
T =

√
5ΛMC. We instead

choose pmin
T equal to mc or mb when the gluon is emitted by a charm or a bottom quark,

respectively. We set mc = 1.55 GeV and mb = 4.95 GeV.

The renormalization and factorization scales have been taken equal to the transverse

momentum of the radiated light parton during the generation of radiation, in accordance

with the POWHEG formalism. We have also taken into account properly the heavy-flavour

thresholds in the running of αS and in the PDF’s, by changing the number of active

flavours when the renormalization or factorization scales cross a mass threshold. In the B̄

calculation, instead, µR and µF have been chosen equal to the top-quark mass, whose value

has been fixed tomt = 175 GeV. In the DS approach, the amplitudes where doubly-resonant

graphs are present and the subtraction term CSUB have been calculated with Γt = 1.7 GeV.

To assess the validity of the approximations and the choices we made, we compare our

results (obtained both with DR and DS) with the MC@NLO outputs.

Figure 3: Comparisons between POWHEG (interfaced to HERWIG) and MC@NLO results at the LHC
pp collider (

√
S = 10 TeV), obtained with the DR prescription. NLO results are also shown in the

lower panel.

In fig. 3 we show a comparison between POWHEG and MC@NLO, obtained with the DR

prescription, without applying any cut on the final state particles. POWHEG results have

been obtained using the HERWIG parton shower, in order to minimize differences arising

from different shower algorithms and hadronization models. In the upper panel of fig. 3

– 11 –
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Production and decay interferences

‣ Usually separated through the narrow width approximation

‣ neglects non-resonant diagrams

‣ NWA  in single top (except s-channel) pretty good...

‣ ... for inclusive quantities at tree level. 

‣ Distributions? NLO? Can use effective field theory approach

30

Falgari, Giannuzzi, Mellor, Signer

Tevatron σtot |mν l̄b − mt| < 20 GeV narrow width
Wg 15.0 ± 0.4 fb 14.3 ± 0.3 fb 14.5 ± 0.1 fb
Wb 87 ± 1 fb 85 ± 2 fb 87 ± 1 fb
qq̄ 46 ± 1 fb 32.3 ± 0.3 fb 29.0 ± 0.2 fb

Table 1: Numerical results for Tevatron at 2 TeV.

LHC σtot |mν l̄b − mt| < 20 GeV narrow width
Wg 4.6 ± 0.2 pb 4.5 ± 0.4 pb 4.6 ± 0.1 pb
Wb 13.1 ± 0.3 pb 13.0 ± 0.4 pb 13.3 ± 0.1 pb
qq̄ 685 ± 19 fb 479 ± 16 fb 432 ± 4 fb

Table 2: Numerical results for the LHC at 14 TeV.

jets with one b-tag, whereas for the s-channel process we require two b-tagged jets. For
simplicity we assume a b-tagging efficiency of 100%, and that we know the longitudinal
momentum component of the neutrino3.

In Table 1 we give the numerical results for the total cross section with the cuts de-
scribed above for W-gluon fusion, flavor-excitation and s-channel process at the Tevatron
(first column). In the second column we required in addition that the invariant mass of
the decay products of the top reconstruct to within 20 GeV to the top quark mass. The
third column contains the results in the narrow width approximation. Table 2 shows the
corresponding results for the LHC. From Table 1 and Table 2 we see that the narrow
width approximation describes the cross section very well for W-gluon fusion and flavor
excitation. The approximation is less satisfactory for s-channel process. Here non-resonant
terms seem to give a more sizeable contribution. This can also be seen in Fig. 4, which
shows the distribution in the invariant mass mν l̄b for W-gluon fusion and the s-channel
process at the Tevatron.

In Fig. 5 we show for the W-gluon fusion process at the Tevatron the distribution of
the pseudorapidities for the b̄-quark, the b-quark and the light quark q. The distribution
for the b̄-quark is slightly peaked in the backward region, the b-quark is almost central
and the light quark goes dominantly in the forward region. Note that the jet algorithm
suppresses b̄’s at sizeable negative pseudo-rapidities. These distributions essentially agree
with Fig. 7 in [6] and Fig. 8 in [12].

In W-gluon fusion or flavor excitation the produced top quark is highly polarized along the
direction of the d̄-quark [14, 18]. Furthermore the cross section at the Tevatron receives
the dominant contribution from the configuration where the u-quark is in the initial state

3E.g. from imposing the W mass constraint on the neutrino plus lepton invariant mass [4].
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Effective FT approach to non-resonance

‣ Using small parameter

‣ separate full process into 

‣ hard: q2 ≃ m2 , factorizable correction

‣ soft:   q2 ≃ m2 δ2, non-factorizable, interference

‣ using method of regions

‣ Compute corrections to 

‣ Gauge invariant method

‣ (would be interesting to compare with 
complex-mass scheme)

31

q2
∼ m2

X

q2
∼ m2

Xδ2

×C(1)
p

soft

Figure 1: Correspondence between the expansion by regions and the effective-theory cal-
culation: hard loops (top left) coincide with corrections to the matching coefficient of the
production vertex (top right), whereas soft loops (bottom left) reproduce the effect of loop
diagrams in the effective theory (bottom right).

of the real matrix element,

dσNLO = dσV +

∫

dΦ dσR

=

(

dσV +

∫

dΦ dσsubt

)

+

∫

dΦ(dσR − dσsubt) , (2.2)

where dσV and dσR denote virtual and real corrections respectively, and dΦ represents the
integration over the phase space of the additional final-state particle. The first term in
the second line of Eq. (2.2) is integrated analytically in D = 4 − 2ε dimensions, ideally
leading to an explicit cancellation of the poles in ε, whereas the second term, which is free
of singularities by construction, can be computed numerically in D = 4 dimensions. Since,
in our case, the virtual-correction term, dσV , is expanded in δ, an exact cancellation of the
singularities requires that dσsubt in the first term of (2.2) is also expanded consistently, i.e.

dσNLO ∼

(

dσexp
V +

∫

dΦ dσexp
subt

)

+

∫

dΦ (dσR − dσsubt) . (2.3)

Given that the kinematical configurations described by dσsubt correspond to a gluon being
soft or two partons being collinear, in this case the expansion parameter can always be
clearly identified. Note that Eq. (2.3) is formally gauge invariant as long as dσR contains
the full set of relevant Feynman diagrams.

5

� =
p2 �m2

m2

3 Results

As mentioned earlier, all necessary tree-level, virtual and real amplitudes for the t-channel
processes were computed in Ref. [28]. The necessary amplitudes for s-channel single-top
production can thus be obtained from there by crossing. These results were implemented in
two independent Monte Carlo codes, one adopting the Catani-Seymour dipole subtraction
scheme [50], and the other the FKS subtraction method [51].

In this section we will present results for the two hadronic processes

N1N2 → JbJle
+ "ET +X , (3.1)

N1N2 → JbJb̄e
+ "ET +X , (3.2)

where N1N2 = pp̄ for Tevatron and N1N2 = pp for LHC. Jb (Jb̄) represents a jet generated
from a bottom quark (antiquark), Jl is a jet generated from a light parton and "ET denotes
missing transverse energy. Clearly, from an experimental point of view, jets generated
from a bottom quark or antiquark are not distinguishable. This assumption can easily be
relaxed, however, this is unessential to the discussion of non-factorizable corrections, which
is the main point of this work. In Eqs. (3.1) and (3.2), X represents an arbitrary number
of additional jets which are not generated from b or b̄ quarks.

Process (3.1) clearly represents a t-channel-like signature, while (3.2) represents an s-
channel-like signal. In fact, at LO in QCD, only t-channel diagrams contribute to the
cross section for (3.1), and (3.2) is determined by s-channel diagrams only. However, as
mentioned at the end of Section 2.2, at NLO in QCD both production channels can con-
tribute to both experimental signatures due to the mixing arising from the qg processes in
Eq. (2.7). While the contribution of s-channel configurations to the first process is negli-
gible, the t-channel contribution to N1N2 → JbJb̄e

+ "ET +X can be numerically important,
even after applying suitable cuts to suppress it. This is discussed more quantitatively in
Sections 3.1 and 3.2.

The input parameters for our numerical analysis are given in Table 1. The NLO top-
decay width is used for both Born and next-to-leading order cross sections. Within a
strict effective-theory approach, in the leading part of the bilinear operator, Eq. (2.1), ΩX

corresponds to the leading-order width within the pole mass scheme. NLO corrections to
the width (i.e. the matching coefficient ΩX) would be taken into account perturbatively.
However, we decided to resum NLO corrections to ΩX as well. The difference between these
two approaches is beyond O(δ3/2) and our approach avoids large differences due to using
different input parameters, which could obscure the effect of genuine NLO corrections.
For the same reason, we use the MSTW2008 NLO PDF set [52] and the corresponding
value of strong coupling, αs, everywhere. Jets are constructed using a standard k⊥ cluster
algorithm with a resolution parameter Dres = 0.7, but any other jet definition could equally
well be used. Unless otherwise specified, the renormalization and factorization scales are,
by default, set to µR = µF = mt/2.

8
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Distributions
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Invariant mass distribution, LHC 7
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Figure 3: Top invariant-mass distributions for the process pp̄ → JbJle+ "ET +X (upper plot)
and pp̄ → JbJb̄e

+ "ET +X (lower plot) at the Tevatron. The blue band represents the LO ET
result, the red band the NLO ET result, and the green curve the NLO spin-correlated NWA
prediction. For the ET results the band width is obtained by varying the factorization and
renormalization scales in the interval mt/4 ≤ µR = µF ≤ mt.

the total cross section, discussed above. As was the case for the total cross section, close
to the interesting region of the peak the scale dependence of the NLO ET result is only
mildly reduced compared to the LO result for the process pp̄ → JbJb̄e

+ "ET (the seemingly
larger band shown in the central bin of the plot is an effect of the logarithmic scale), and
is actually increased for the t-channel-like signal.

In Figures 4 and 5 we present a selection of relevant kinematical distributions. For the
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Figure 3: Top invariant-mass distributions for the process pp̄ → JbJle+ "ET +X (upper plot)
and pp̄ → JbJb̄e

+ "ET +X (lower plot) at the Tevatron. The blue band represents the LO ET
result, the red band the NLO ET result, and the green curve the NLO spin-correlated NWA
prediction. For the ET results the band width is obtained by varying the factorization and
renormalization scales in the interval mt/4 ≤ µR = µF ≤ mt.

the total cross section, discussed above. As was the case for the total cross section, close
to the interesting region of the peak the scale dependence of the NLO ET result is only
mildly reduced compared to the LO result for the process pp̄ → JbJb̄e

+ "ET (the seemingly
larger band shown in the central bin of the plot is an effect of the logarithmic scale), and
is actually increased for the t-channel-like signal.

In Figures 4 and 5 we present a selection of relevant kinematical distributions. For the
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t-channel s-channel

•Non-factorizable corrections change sign around peak
•Off-shell effects large close to peak

•Largely cancels for inclusive cross section, as in tT

Falgari, Giannuzzi, Mellor, Signer

pp → JbJle+ "ET +X ET NWA

LO[pb] 3.460(1)+0.278
−0.403 3.505(1)

NLO[pb] 1.609(6)+0.303
−0.240 1.642(1)

pp → JbJb̄e
+ "ET +X ET NWA

LO[pb] 0.1654(1)+0.0001
−0.0010 0.1677(1)

NLO[pb] 0.1618(4)+0.0021
−0.0005 0.1635(1)

Table 5: LO and NLO cross sections for the processes (3.1) and (3.2), computed using the
parameters given in Table 1 and imposing the kinematical cuts and vetoes given in Table 4.
The errors come from scale uncertainty only. All numbers are in picobarns.

LHC 7 TeV: t!channel
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LHC 7 TeV: s!channel
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Figure 6: Scale dependence of the total cross section for pp → JbJle+ "ET (left) and pp →
JbJb̄e

+ "ET (right) at the 7 TeV LHC. The plot shows the LO cross section with LO (dashed
blue) and NLO (solid blue) PDFs, and the NLO cross section with simultaneous variation of
factorization and renormalization scale (solid red) and for fixed factorization scale (dashed
red).

pp → JbJle+ "ET + X , only 0.5% arises from s-channel diagrams. On the contrary, for
pp → JbJb̄e

+ "ET + X , t-channel diagrams contribute about 59% of the total NLO cross
section. This is a consequence of the much larger cross section of t-channel single-top
production compared to s-channel production at the LHC. For the t-channel-like signal
the scale dependence is only mildly reduced at NLO. Again, this can be partly explained
by the additional renormalization scale dependence introduced at this order, as is clear from
the left plot in Figure 6. For the s-channel-like signal, the scale dependence is increased at
NLO. In this case, this can be explained by our default choice for the scales, mt/4 ≤ µR =
µF ≤ mt, which is very close to the region where the scale dependence of the NLO cross
section is the strongest and the scale dependence of the Born cross section the weakest.
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Top quark spin
‣ Let us now assume we can somehow polarize the top quark sample. 

Can we detect the top quark spin?

‣ Full decay

‣ Take the top spin vector conveniently along the z-axis

‣ Angular distribution of charged lepton for spin-up top

33
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Qµ⇥ = Qµ⇥
1 +Qµ⇥

2 = 16[p̃(�)µt p⇥b + p̃(�)⇥t pµb � gµ⇥(p̃(�)t · pb) + i�µ⇥⇤⌅p̃(�)t⇤ pb⌅] , p̃
(�)
t =

1

2
(pt �mtSt)

From this point one can follow the same process as in section (2.1) in contracting the Lµ⇥ , Qµ⇥ tensors.

The only di⇥erence is that there is p̃(�)t instead of pt and an extra factor of 2. The decay amplitude,
using the narrow width approximation for W+ (app. A) becomes

⌃|M |2⌥ = 128G2
f |Vtb|2

M4
w

(q2 �M2
w)

2 +M2
w�

2
w

(p̃(�)t · pē)(pb · pn) (2.17)

Moving to the rest frame of the top quark, it is Et = mt and |�pt| = 0, so choosing a z direction for

the top spin (fig. 7A, 7B), p̃(�)t yields to

p̃(�)µt =
1

2
(pµt �mtS

µ
t ) =

1

2
{

⇤

⌥⌥⇧

mt

0
0
0
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1
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⌅
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(a) Spin axis - products (b) e+ momentum
decomposition

(c) Top quark rest frame

Figure 7. Top spin axis orientation in space in top quark decay

The positron momentum can be decomposed with respect to the chosen z axis (fig. 7B).

pµē =
�
|�pē| |�pē| sin ⇥ cos⌅ |�pē| sin ⇥ sin⌅ |�pē| cos ⇥

⇥

So the inner product p̃t · pē, appearing in the amplitude, becomes9

p̃t · pē = p̃(�)µt gµ⇥p
⇥
ē =

1

2
mt|�pē|(1 + cos ⇥e+)

The amplitude now gives the correlation between the top spin and the angular distribution of the positron
with respect to the top spin axis z, in the case of spin up top quark.

⌃|M(t(�) ⇤ be+⇤e)|2⌥ = 64G2
f |Vtb|2

M4
w

(q2 �M2
w)

2 +M2
w�

2
w

mt|�pē|(1 + cos ⇥e+)(pb · pn) (2.18)

One can examine the same process having the top quark with spin down along the same z axis. The

9The angle � is just redefined as �e+ , for later convenience.

1
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Polarized top decay
‣ For f = charged lepton: c=1   ⇒ 100% correlation !

‣ Top self-analyzes its spin

‣ Charged leptons easy to measure, good handle on 
top spin

‣ if they can be produced in a polarized fashion

‣ single top production does so!

‣ Note: charged lepton has larger “spin-analyzing 
power” than its parent W!

‣ Reason: for this distribution intermediate λ = 0 
and λ = - amplitudes interference.

‣ If decay can take place via intermediate charged 
Higgs, the distribution would change..
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Spin correlations

‣ A process with an intermediate “resonant” particle P (e.g. W, Z, top..) reads

‣ has “production” spin/angular correlations if it depends on di.a, di.b or di.X

‣ Let P be an intermediate W, which will be nearly on-shell. We can approximate 
the intermediate W propagator through the Narrow Width approximation

‣ Resulting expression

‣ with ρλλ’  the spin-density matrix for W-decay. Can do this also for top decay. 

‣ Can now include QCD corrections to production and decay separately

‣ Can include decay with spin correlations (half-NLO, no loops in decay) a 
posteriori in MC@NLO, by reweighting according to full tree level
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by a Breit-Wigner function. There is another piece of information that is lost in

the decay chain approximation, and cannot be recovered, namely that on production

angular correlations (more precisely, angular correlations due to production spin cor-

relations). Let us denote by P the decaying particle (a vector boson or a top in our
case), and by d1, . . ., dn its decay products, and consider the hard process

a + b −→ P (−→ d1 + · · · + dn) + X , (1.1)

with X a set of final-state particles which may also contain other decaying vector
bosons or top quarks. The process of eq. (1.1) is said to have decay angular correla-
tions if the matrix elements of the corresponding resonant Feynman diagrams have

a non-trivial dependence1 on (di ·dj). Clearly, decay correlations are always present
if the particle P has spin different from zero. The process of eq. (1.1) has production

angular correlations if its matrix elements have a non-trivial dependence on (di ·a),
(di·b), or (di·X). It is therefore clear that the decay chain approximation can account

for the decay correlations, but not for the production correlations.

The decay chain approximation has obvious advantages, leading to much simpler
computations (especially at higher orders) owing to the reduced multiplicity of the
final state. Still, it is not acceptable if the spectra of the decay products must be pre-

dicted with some accuracy. The aim of this paper is to introduce an approach to the
computations of lepton spectra as given by resonant diagrams, which uses the decay

chain approximation but also correctly accounts for production angular correlations.
The method is primarily intended to be applied to parton shower Monte Carlos,

including those that implement NLO QCD corrections such as MC@NLO [1, 2] or
POWHEG [3]. The idea stems from the following observation: the matrix elements
computed with the resonant diagrams are bounded from above by the matrix ele-

ments obtained by eliminating the decay products and putting the parent particles
(vector bosons and/or top quarks) on-shell, times a process-independent constant.

One can therefore use the latter matrix elements (which we call undecayed matrix
elements) to perform computing-intensive tasks for which production correlations

are not an issue. When the four-momenta of the parent particles are available, the
resonant diagrams (we refer to the corresponding matrix elements as leptonic ones)
are used in the context of a simple hit-and-miss procedure to generate the leptonic

four-momenta.

In order to apply a hit-and-miss procedure, we need upper bounds on the decay
matrix elements that are universal with respect to the production process. These

are derived in the following section, first for vector boson, then for top quark de-
cay, and finally for final states containing several vector bosons and/or top quarks.
The practical application of these results is discussed in section 3. The inclusion of

angular correlations in NLO computations is hampered by the presence of virtual

1We denote here a particle and its four-momentum by the same symbol.
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where mV and ΓV are the mass and the width of the vector boson respectively, and

Mµ is the amplitude for the process

a(P1) + b(P2) −→ V (q) + X(x) , (2.16)

µ being the Lorentz index associated with V ; the polarization four-vector of V is not
included in Mµ. From eq. (2.15) we get (neglecting lepton masses)

∑

spins

|A|2 = MµM∗ρ (−gµν + qµqν/m2
V ) (−gρσ + qρqσ/m2

V )

(q2 − m2
V )2 + (mV ΓV )2

× F 2
V Tr

[(

V 2
V l + A2

V l − 2VV lAV lγ5

)

/k1γ
ν/k2γ

σ
]

. (2.17)

We now consider the narrow width approximation ΓV → 0. We have

1

(q2 − m2
V )2 + (mV ΓV )2

−→
π

mV ΓV

δ
(

q2 − m2
V

)

. (2.18)

The δ function, which puts the vector boson on shell, allows us to write

(

−gµν +
qµqν

m2
V

)

=
∑

λ

εµ
λε

∗ν
λ , (2.19)

where ελ are the polarization four-vectors of the vector boson. Using eq. (2.19),

eq. (2.17) becomes

∑

spin

|A|2 =
π

mV ΓV

∑

λλ′

M̃λρλλ′M̃∗

λ′ δ
(

q2 − m2
V

)

, (2.20)

where we defined

M̃λ = Mµεµ
λ , (2.21)

which is the amplitude for the process of eq. (2.16) for a given vector boson polar-
ization λ. We also define

ρλλ′ = F 2
V Tr

[(

V 2
V l + A2

V l − 2VV lAV lγ5

)

/k1/ε
∗

λ/k2/ελ′

]

(2.22)

which is, apart from the normalization, the decay density matrix2 of the vector boson.
This quantity can be explicitly computed; here, we only present it in the form of a

diagonal matrix

ρλλ′ =
(

UρDU∗
)

λλ′
, (2.23)

where

ρD = 2m2
V F 2

V diag
(

0, (VV l − AV l)
2, (VV l + AV l)

2
)

. (2.24)

2The density matrix is usually defined as the transpose of that in eq. (2.22). See e.g. ref. [4].
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Production and decay at NLO
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FIG. 15: Comparison of the NLO distributions for HT in the s-channel process (left) and Qη in
the t-channel process (right), with and without radiation in decay.

treatment is obviously approximate, because we assume pT -independent efficiencies, stable

b and c quarks and include no showering or hadronization. Nevertheless it confirms that the

search for single top is extremely challenging and suggests that significantly larger tagging

efficiencies and/or methods with greater discriminatory power will be needed to observe sin-

gle top production. We hope to have contributed to this search by providing more reliable

information on the kinematic structure of both the signal and the background.
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Little effect of radiation on shape, for rate a little more 



Spin correlations for single top in MC@NLO

‣ Top is produced polarized by EW interaction

‣ 100% correlation between top spin and charged lepton direction

‣ Angle of lepton with appropriate axis is different per channel

‣ Method included “a posteriori”. Now also used in POWHEG

Frixione, EL, Motylinski, Webber

Beam direction

Hardest, non-b jet

Robust correlation in NLO event generation

θ

Aioli, Nason, Oleari, Re
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spin-space correlation 
works both ways



MC@NLO: Ht 

‣ To calculate, very similar to Wt

‣ but tT interference problem only if mH+ < mt

‣ also: Yukawa coupling and renormalization

38
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Figure 7: The total NLO cross-section for H−t production, shown for DR (solid) and DS

(dashed), for a top mass of 172 GeV. The error bars correspond to statistical uncertainties.

The discontinuity is due to subtraction of resonant contributions for mH− < mt, and would

be filled in after adding in the top pair production background.

with the corresponding top pair process (a discussion of threshold behavior can also
be found in the context of a strictly NLO calculation in [21], where however the DR

and DS definitions have not been used).

5. Conclusion

In this paper, we have considered the process of charged Higgs boson production in
association with a top quark. This is an important scattering process at the LHC,

given that charged Higgs bosons generically occur in extensions to the Standard
Model. In order to increase the accuracy with which this process can be calculated,
we have implemented it in the MC@NLO framework for combining fixed order matrix

elements at next-to-leading order with a parton shower.
The details of the MC@NLO calculation are different in the two kinematic regions

in which the charged Higgs boson mass is less than and greater than the top mass
respectively. For mH− > mt, the NLO calculation of the H−t process is well-defined,

and the implementation in MC@NLO follows the procedure adopted in other single
top (and indeed non-top related) processes [8, 26, 9].

In this high Higgs mass region, we presented example kinematic distributions

involving the top and charged Higgs bosons, which demonstrated the expected dif-
ferences between the fixed order and parton showered approaches. We also looked

at the properties of b jets in addition to the top decay, to see if these are in any way
different to radiated light jets (motivated by previous analyses which aim to exploit

26
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Azimuthal distributions and BSM tests
‣ Angular distributions (and others) can be selective 

probes of new physics

‣ Rely on nearly 100% correlation of decay- lepton 
with top spin

‣ If, e.g., Z’ polarizes the tops, can use distribution in 
azimuthal angle of lepton (wrt. beam-top plane) to 
study dynamics

‣ Enhance sensitivity by judicious cuts on pT of top

‣ Construct asymmetry

‣ MC@NLO and MadEvent

‣ Discriminates Ht and Wt, and sensitive to 
parameters

‣ Robust under HO corrections	



Godbole, Rao, Rindani, Singh
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Conclusions

‣ Single top has it all:

‣ top, EW scale, spin, flavor

‣ Measurements bedeviled by tough background, require multi-variate methods 

‣ Theoretical descriptions and tools good

‣ more precise checking of single top behavior imminent
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