# Smooth Hybrid Inflation and Non-thermal Type-II Leptogenesis

Arunansu Sil

IIT, Guwahati

Collaborators: S. Khalil, Q. Shafi

27<sup>th</sup> Sept., 2012

DESY, Hamburg

# Overview

- Motivation
- Set up
- Smooth Hybrid Inflation with triplets
- Reheating
- Type-II leptogenesis
- Connection with neutrino mass and mixings
- Conclusions

### Motivation

- **Supersymmetric models of inflation**: an attractive class of models for realizing inflation
- Smooth Hybrid Inflation: predicts spectral index ~ 0.97
  No topological defects are produced
- Inflation in these models is naturally followed by leptogenesis.
  (Non-thermal leptogenesis)
- Non-thermal Type-I leptogenesis (through RH neutrino decay) with SHI is studied before. Here we implement a scenario where Non-thermal Type-II leptogenesis (through Triplet decay) is considered with SHI.

### Set up

Supersymmetric version of the gauge group:  $SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$ 

#### **Role of Higgs triplets involved:**

 $SU(2)_{R}$  triplets  $\rightarrow$  Smooth Hybrid Inflation

Decay of Inflaton system  $\rightarrow$  SU(2)<sub>L</sub> triplets (Reheating)

Decay of  $SU(2)_L$  triplets  $\rightarrow$  produces lepton asymmetry

 $SU(2)_{L}$  Triplets  $\rightarrow$  provides also the neutrino mass

### Smooth Hybrid Inflation with SU(2)<sub>R</sub> triplet

• Superpotential  $W = S[(\Delta_R \Delta_R)^2 / M_s^2 - M_x^2] + \alpha_{ab} \Delta_L^a \overline{\Delta}_L^b \overline{\Delta}_R \Delta_R / M_s + \gamma^a HH \overline{\Delta}_L^a \overline{\Delta}_R / M_s + f_1^a LL \Delta_L^a + f_2 L_C L_C \Delta_R + Y^l L L_C H + Y^q Q Q_C H$ 

(a, b = 1,2) ; for simplicity, we assume  $\alpha_{ab} = \delta_{ab} \alpha_a$ 

- $M_x$ : a superheavy mass scale,  $M_s$  = cutoff scale which controls the non-renormalizable terms.
- The term  $\Delta_{L}^{a} \overline{\Delta}_{L}^{b}$  is forbidden by a Z<sub>2</sub> symmetry , hence SU(2)<sub>L</sub> triplets are lighter than RH neutrinos.

| charges        | S | Δ <sub>L</sub> a | $\overline{\Delta}_{L}^{a}$ | Δ <sub>R</sub> | Δ <sub>R</sub> | Н | L | L <sub>C</sub> | Q | Q <sub>c</sub> |
|----------------|---|------------------|-----------------------------|----------------|----------------|---|---|----------------|---|----------------|
| R              | 2 | 2                | 0                           | 0              | 0              | 1 | 0 | 1              | 0 | 1              |
| Z <sub>2</sub> | 1 | 1                | -1                          | 1              | -1             | 1 | 1 | 1              | 1 | 1              |

### Smooth Hybrid Inflation contd.

•  $W_{inf} = S[(\Delta_R \overline{\Delta}_R)^2 / M_s^2 - M_x^2]$ 

Using the D-flatness condition  $|\Delta_R| = |\overline{\Delta}_R|$ ,  $\xi/2 = |\Delta^0_R|$ ,  $\sigma^2 = 2|s|^2$ 

$$V_{inf} = [\xi^4/16M_s^2 - M_x^2]^2 + \sigma^2 \xi^2/16M_s^4$$

- At the end of inflation, it reaches SUSY vacuum  $<\Delta_R > = M = (M_x M_s)^{1/2}$ With M =  $M_{GUT} = 2.86 \times 10^{16}$  GeV and number of e-folding ~ 57, in order to produce correct  $\delta T/T$ , we have  $n_s = 0.97$ .
- However once supergravity corrections are added, n<sub>s</sub> approaches 1. As a remedy, we consider non-minimal Kahler potential,

$$K = |S|^{2} + |\Delta_{R}|^{2} + |\overline{\Delta}_{R}|^{2} + \frac{|\overline{\Delta}_{R}|^{2}}{4} + \frac{|s|^{4}}{M_{P}^{2}}$$

• The inflationary potential for  $\sigma^2 > M^2$ ,

$$V = M^{4}_{X} \left[ 1 - k_{s} \frac{\sigma^{2}}{2M_{P}^{2}} + (1 - \frac{7}{2}k_{s} + 2k^{2}_{s}) \frac{\sigma^{4}}{8M_{P}^{4}} - \frac{2}{27} \frac{M^{4}}{\sigma^{4}} \right]$$

#### Smooth hybrid inflation contd.

Then one can achieve,  $n_s = 0.968$  with a specific choice of  $k_{s_j}$  as in the table.

| Set | <b>k</b> <sub>s</sub> | n <sub>s</sub> | M(GeV)               | M <sub>s</sub> (GeV) | σ <sub>q</sub> (GeV) |
|-----|-----------------------|----------------|----------------------|----------------------|----------------------|
| I   | 0                     | .99            | 1.2x10 <sup>16</sup> | 1.8x10 <sup>17</sup> | 1.8x10 <sup>17</sup> |
| II  | 0.01                  | .968           | 4x10 <sup>16</sup>   | 1.5x10 <sup>18</sup> | 3x10 <sup>17</sup>   |

## Reheating

- Decay of the inflaton into RH neutrinos: Kinematically forbidden  $(m_{inf} = 2M^3/M_s^2 \text{ and RH neutrino mass is } M \sim M_{GUT})$
- Decay will be through:  $\alpha_a \Delta_L^a \overline{\Delta}_L^a \Delta_R \overline{\Delta}_R / M_s$  coupling and hence, inflaton system decays into SU(2)<sub>L</sub> triplets only provided  $(m_{\Delta L} = \alpha_a M^2 / M_s)$   $\alpha_a \leq \sqrt{2} \frac{M}{M_a}$
- The reheating temperature is then:

$$T_{R} = 0.12 \, \alpha \left(\frac{M}{M_{s}}\right)^{2} \sqrt{MM_{P}} \qquad , \qquad \alpha = \sqrt{(\alpha_{1}^{2} + \alpha_{2}^{2})}$$

• From Table we get,  $M/M_s \simeq 10^{-2}$ , thereby  $T_R \simeq 10^{10-11} \text{ GeV}$  (for  $\alpha \simeq 10^{-3}$ ).

Consequence: For high reheat temperature, no gravitino problem would be there if gravitino is sufficiently heavy. Although the constraint then may come from LSP decays, however for  $m_{3/2} > 60$  TeV, the problem can be evaded for  $m_{LSP} \sim 100$  GeV. [Endo et al, PRD76, 083509 (2007), Gherghetta et al., Nucl Phys B559, 27 (1999)]

## Type II Non-thermal leptogenesis

- In general both RH neutrinos and LH triplets can contribute toward lepton asymmetry.
- However, RH neutrinos being superheavy (all with masses ~ M<sub>GUT</sub>), the contribution to lepton asymmetry is mainly from the LH triplet decays.
- Note that two LH triplets are considered, for having CP violation.



• The effective mass-squared matrix: [Hambye et. al, Nucl. Phys. B602, 23 (2002)]

$$M^{2} = \begin{bmatrix} M^{2}_{1} - i\Gamma_{11} M_{1} & -i\Gamma_{12} M_{2} \end{bmatrix}$$
$$-i\Gamma_{21} M_{1} & M^{2}_{1} - i\Gamma_{11} M_{1} \end{bmatrix}$$

#### **Type-II leptogenesis**

$$\Gamma_{ab}M_{b} = \frac{1}{8} \left[ \sum_{ij} (f^{a^{*}}_{1ij}f^{b}_{1ij})p^{2}_{\Delta_{L}} + M_{a}M_{b}g^{a}g^{b^{*}} \right]$$

The final lepton asymmetry is given by

$$\frac{n_{L}}{s} = \sum_{a} \left( \frac{3}{2} \frac{T_{R}}{m_{inf}} + \frac{3M_{1}M_{2}}{\pi(M_{1}^{2} - M_{2}^{2})} \frac{\sum_{ij} \operatorname{Im} f^{1}_{ij} f^{2*}_{ij} g^{1} g^{2*}}{\sum_{ij} |f^{a}_{1ij}|^{2} + |g^{a}|^{2}} \right)$$

- As long as the SU(2)<sub>L</sub> triplets are sufficiently larger than  $T_{R_{,}}$  no significant wash out happens, unlike thermal leptogenesis.
- To estimate  $n_L/s$ , we need to fix some parameters which appear in the above expression, which are also involved in the neutrino mass matrix.

### Leptogenesis and neutrino mass.

#### **Neutrino Mass:**

• Type II contribution:  $m_{\mu j} = 2f^a{}_{1ij}v^a{}_{\Delta_L} - m_D^T M_R^{-1}m_D \approx 2f^a{}_{1ij}\frac{g^a}{M}v^2$ 

where  $v_{\Delta L}^{a}$  are the SU(2)<sub>L</sub> triplet's vevs, and v = 174 GeV.

• We simplify the analysis by assuming:  $|g^1| = |g^2| = g$ ,  $|f_1| = |f_1| = f_1$ Using  $m_v = U_v^* m_v^{diag} U_v^{T*}$ 

where  $m_v = \text{diag} (m_{v1}, m_{v2}, m_{v3})$ .

 In the basis where charged lepton mass matrix is diagonal, U<sub>v</sub> coincides with lepton mixing matrix. We therefore used the current best fit values for neutrino mixings and mass square differences (assuming that the lightest neutrino mass is zero) to construct m<sub>v.</sub>

#### Leptogenesis and neutrino mass contd.

$$\frac{n_L}{s} = \frac{0.374}{\pi} \frac{p\sqrt{1+p^2}}{1-p^2} \sqrt{\frac{M_P}{M}} \frac{M_1M_s}{M^2} \frac{\sum_{ij} |m_{vij}|^2 Fg^2}{\sum_{ij} |m_{vij}|^2 F+g^4}$$

where we define the parameter p as a degree of degeneracy between M<sub>1</sub> and M<sub>2</sub>, i.e. p = M<sub>2</sub> /M<sub>1</sub> and  $F = \frac{p^2}{M_1^2} \frac{M_1^2}{M_1^2}$ 

$$F = \frac{1}{(1+p)^2} \frac{1}{4v^4}$$

• 
$$\Sigma_{ij} |m_{vij}|^2 = 0.0025 \text{ eV}^2$$
,  $\alpha_1 = 10^{-3}$ 

•  $g = \gamma M/M_s$ 



Contour plot for  $n_L/s$  as a function of the parameters:  $p = M_2/M_2$  and  $g < M/M_s$ 

Findings:

a)  $n_L/s$  can be of correct order (2-3)  $x10^{-10}$  for 0.2 2.5 $x10^{-4}$ b)  $M_1 = 10^{12}$  GeV,  $M_2 = (2-8)x10^{11}$  GeV, therefore,  $M_{1,2}/T_R > 10$ , which indicates no washout should happen.

## Conclusions

- We have shown that  $SU(2)_R$  triplets can be responsible for Inflation.
- Smooth hybrid inflation is realized with modified Kahler potential.
- High reheating temperature ( $T_{R} \sim 10^{10}$  GeV) and production of SU(2)<sub>L</sub> triplets.
- SU(2)<sub>L</sub> triplet's decay produces lepton asymmetry.
- Neutrino mass is mainly coming from Triplet's contribution and is compatible with current data.