From Rigid D-Branes to Particle Physics

Gabriele Honecker

PRISMA Cluster of Excellence @ JG|U Mainz

based on

- arXiv:1209.3010 [hep-th] with Wieland Staessens and Martin Ripka
- ▶ JHEP 1101 (2011) 091 with Stefan Förste

DESY Theory Workshop, Hamburg, 27 September 2012

 D6-brane model building in Type IIA/ΩR string theory: geometric intuition

- ▶ generically: non-rigid 3-cycles ~→ matter in Adj rep. of U(N)
 ⇔ continuous displacements & Wilson lines
 - \Rightarrow continuous breaking of gauge groups & exotic matter
- choose compactification with rigid 3-cycles
 orbifolds with discrete torsion

Rigid D-branes & discrete torsion

► discrete torsion on $T^6/\mathbb{Z}_K \times \mathbb{Z}_L$ orbifolds: phase $\eta = e^{2\pi i m/\gcd(K,L)}$ under \mathbb{Z}_K in \mathbb{Z}_L twisted sector here: $(K, L) = (2, 2M) \rightsquigarrow \boxed{\eta = \pm 1}$ without with discrete torsion

▶ $\eta \rightarrow -\eta$ exchanges roles of $h_{11} \leftrightarrow h_{21}$

- new 3-cycles for D6-brane model building $\left| \eta = -1 \right|$
 - ▶ D6-branes stuck at Z₂ singularities → no open string moduli: rigid D-branes
- ► less closed string moduli on IIA/ $\Omega \mathcal{R}$ for $\eta = -1$:
 - ► more h₂₁ complex structures ~→ some fixed by SUSY conditions
 - ▶ less h_{11}^- Kähler moduli (but $(T^2)^3$ volumes still not fixed)
 - less h⁺₁₁ vectors (e.g. dark photon)

 \rightsquigarrow (some) moduli projected out by construction

Hodge numbers on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_{2M}$ with(out) discrete torsion

T ⁶ / torsion	lattice Hodge numbers	U	ŵ	2 <i>ŵ</i>	3 <i>ŵ</i>	v	$(\vec{v}+\vec{w})$	$(\vec{v}+2\vec{w})$	$(\vec{v}+3\vec{w})$	total
$\mathbb{Z}_2 \times \mathbb{Z}_2$	SU(2) ⁶		$(0, \frac{1}{2}, -\frac{1}{2})$			$(\frac{1}{2}, -\frac{1}{2}, 0)$	$(\frac{1}{2}, 0, -\frac{1}{2})$			
$\eta = 1$	h ₁₁	3	16			16	16			51
	h ₂₁	3	0			0	0			3
$\eta = -1$	h ₁₁	3	0			0	0			3
	h ₂₁	3	16			16	16			51
$\mathbb{Z}_2\times\mathbb{Z}_4$	$SU(2)^2 \times SO(5)^2$		$(0, \frac{1}{4}, -\frac{1}{4})$	$(0, \frac{1}{2}, -\frac{1}{2})$		$(\frac{1}{2},-\frac{1}{2},0)$	$(\frac{1}{2}, -\frac{1}{4}, -\frac{1}{4})$	$(\frac{1}{2}, 0, -\frac{1}{2})$		
$\eta = 1$	h11	3	8	10		12	16	12		61
	h ₂₁	1	0	0		0	0	0		1
$\eta = -1$	h11	3	0	10		4	0	4		21
	h ₂₁	1	8	0		0	0	0		1+8
$\mathbb{Z}_2\times\mathbb{Z}_6$	$SU(2)^2 \times SU(3)^2$		$(0, \frac{1}{6}, -\frac{1}{6})$	$(0, \frac{1}{3}, -\frac{1}{3})$	$(0, \frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2},-\frac{1}{2},0)$	$(\frac{1}{2}, -\frac{1}{3}, -\frac{1}{6})$	$(\frac{1}{2}, -\frac{1}{6}, -\frac{1}{3})$	$(\frac{1}{2}, 0, -\frac{1}{2})$	
$\eta = 1$	h ₁₁	3	2	8	6	8	8	8	8	51
	h ₂₁	1	0	2	0	0	0	0	0	1 +2
$\eta = -1$	h11	3	0	8	0	0	4	4	0	19
	h ₂₁	1	2	2	6	4	0	0	4	15 + 4
$\mathbb{Z}_2\times\mathbb{Z}_6'$	SU(3) ³		$\left(-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}\right)$	$\left(-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right)$	$(0, \frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, -\frac{1}{2}, 0)$	$(\frac{1}{6}, -\frac{1}{3}, \frac{1}{6})$	$\left(-\frac{1}{6},-\frac{1}{6},\frac{1}{3}\right)$	$(\frac{1}{2}, 0, -\frac{1}{2})$	
$\eta = 1$	h ₁₁	3	2	9	6	6	2	2	6	36
	h ₂₁	0	0	0	0	0	0	0	0	0
$\eta = -1$	h ₁₁	3	1	9	0	0	1	1	0	15
	h ₂₁	0	0	0	5	5	0	0	5	15

► Z₂ sectors 'see' discrete torsion only for T⁶/Z₂ × Z_{2M} with M odd ~→ potential for new SM or GUT vacua for 2M ∈ {2,6,6'}

$T^{6}/\mathbb{Z}_{2} \times \mathbb{Z}_{2M}$ with discrete torsion

3 options:

- ▶ $\mathbb{Z}_2 \times \mathbb{Z}_2$: most simple case Blumenhagen, Cvetič, Marchesano, Shiu '05
 - intensive searches by several groups
 - no global model with SM properties to date
- \triangleright $\mathbb{Z}_2 \times \mathbb{Z}_6$: most complicated
 - Förste, G.H. '10 need to classify SUSY 3-cycles per complex structure
 - a priori SM, L-R, Pati-Salam & SU(5) GUTs possible
- \blacktriangleright $\mathbb{Z}_2 \times \mathbb{Z}'_6$: intermediary

Förste, G.H. '10; G.H., Ripka, Staessens '12

- simple classification of SUSY 3-cycles
- SU(5) GUTs a priori excluded

Common features:

- 8 discrete param. of rigid D6-brane:
 - > 3 displacements σ
 - ▶ 2 Z₂ eigenvalues
 - > 3 Wilson lines τ

Orientifold projection $\Omega \mathcal{R}$

► Anti-holomorphic involution $\mathcal{R} : z^i \to \overline{z}^i$ per two-torus $T^2_{(i)}$ Im(z) Im(z) Im(z) Im(z) Re(z) Re(z) Re(z) Re(z) Re(z)

+ acts non-trivially on \mathbb{Z}_2 f.p. on **tilted** tori

- worldsheet duality (Klein bottle): $\eta = \eta_{\Omega R} \prod_{i=1}^{3} \eta_{\Omega R \mathbb{Z}_{2}^{(i)}} = -1$
 - one **exotic O6**-plane $(\eta_{\Omega \mathcal{R} \mathbb{Z}_2^{(i)}} = -1)$
 - three ordinary O6-planes $(\eta_{\Omega \mathcal{R} \mathbb{Z}_2^{(i)}} = +1)$
- $\Omega \mathcal{R}$ projection on $\mathbb{Z}_2^{(i)}$ twisted sectors:

$$(-1)^{\tau^{\mathbb{Z}_2^{(i)}}} \to -\eta_{(i)} (-1)^{\tau^{\mathbb{Z}_2^{(i)}}} \quad \text{with} \quad \eta_{(i)} \equiv \eta_{\Omega \mathcal{R}} \eta_{\Omega \mathcal{R} \mathbb{Z}_2^{(i)}}$$

• $\Omega \mathcal{R}$ inv. D6-branes \rightsquigarrow enhance $U(N) \rightarrow USp(2N)$ or SO(2N)

Gauge enhancements to USp(2N) or SO(2N)

- USp(2) groups needed for
 - model building: $SU(2)_L = USp(2)$
 - global K-theory constraint: USp(2)probe

 $\Omega \mathcal{R}$ inv. D6-branes c:

- $\bullet \ \delta_i \equiv 2b_i \tau^i \sigma^i \in \{0,1\}$ non-tivial for **tilted** tori
- indep. of $(-1)^{\tau^{\mathbb{Z}_2^{(i)}}}$

<i>c</i> to	$\Omega \mathcal{R}$ invariant for $(\eta_{(1)}, \eta_{(2)}, \eta_{(3)}) \stackrel{!}{=}$
$\Omega \mathcal{R}$	$\left(-(-1)^{\delta_{2}+\delta_{3}},-(-1)^{\delta_{1}+\delta_{3}},-(-1)^{\delta_{1}+\delta_{2}} ight)$
$\Omega \mathcal{R} \mathbb{Z}_2^{(1)}$	$\left(-(-1)^{\delta_{2}+\delta_{3}},(-1)^{\delta_{1}+\delta_{3}},(-1)^{\delta_{1}+\delta_{2}} ight)$
$\Omega \mathcal{R} \mathbb{Z}_2^{(2)}$	$\left((-1)^{\delta_2+\delta_3},-(-1)^{\delta_1+\delta_3},(-1)^{\delta_1+\delta_2} ight)$
$\Omega \mathcal{R} \mathbb{Z}_2^{(3)}$	$\left((-1)^{\delta_2+\delta_3},(-1)^{\delta_1+\delta_3},-(-1)^{\delta_1+\delta_2} ight)$

- untilted tori $(b_i \equiv 0)$: $\Omega \mathcal{R}$ inv. only for $c \parallel \text{exotic } O6 \&$ any $(\vec{\sigma}, \vec{\tau}) \rightsquigarrow USp(2N)$ $T^6/\mathbb{Z}_2 imes \mathbb{Z}_2$: Blumenhagen, Cvetič, Marchesano, Shiu '05
- tilted tori $(b_i \equiv \frac{1}{2})$: $\Omega \mathcal{R}$ invariance for
- G.H., Ripka, Staessens '12
- $c \parallel \text{ exotic O6 } \& \tau^i \sigma^i \equiv 0 \forall i \rightsquigarrow USp(2N)$
- c || exotic O6 & $\tau^i \sigma^i \equiv 1 \; \forall i \rightsquigarrow SO(2N)$
- $c \perp \text{ exotic } O6 \& \tau^i \sigma^i \neq \tau^j \sigma^j = \tau^k \sigma^k = 0 \rightsquigarrow SO(2N)$
- $c \perp \text{ exotic O6} \& \tau^i \sigma^i \neq \tau^j \sigma^j = \tau^k \sigma^k = 1 \rightsquigarrow USp(2N)$

 \rightsquigarrow less probe brane conditions (\checkmark) & $SU(2)_L$ candidates ($\frac{1}{2}$)

Massless spectra of U(N) & completely rigid D-branes

Chiral spectrum						
rep. multiplicity						
(N_a, \overline{N}_b)	$\Pi_a \circ \Pi_b$					
(N_a, N_b)	$\Pi_a \circ \Pi_b'$					
(Anti _a)	$\frac{1}{2}\left(\Pi_{a}\circ\Pi_{a}'+\Pi_{a}\circ\Pi_{O6} ight)$					
(Sym _a)	$rac{1}{2}\left(\Pi_{a}\circ\Pi_{a}'-\Pi_{a}\circ\Pi_{O6} ight)$					

 $\mathbb{Z}_2 \times \mathbb{Z}_2$:

- topological intersection number Π_a ∘ Π_b of 3-cycles Π_a, Π_b = net-chirality of (N_a, N_b) for sgn(Π_a ∘ Π_b) > 0 (N̄_a, N_b) for sgn(Π_a ∘ Π_b) < 0
- $|\Pi_a \circ \Pi_b| = \text{total amount of matter}$

$$\mathbb{Z}_2 \times \mathbb{Z}_{2M>2}$$
 :

- ► net-chirality not sufficient: cancellations among a(ω^kb)_{k∈{0,1,2}} sectors
- usually \mathbf{Adj}_c at $c(\omega^k c)$ self-intersections
- $\mathbb{Z}_2 \times \mathbb{Z}_6$: Adj_c for *some* shortest 2-cycles on T^4
- $\mathbb{Z}_2 \times \mathbb{Z}'_6 : \operatorname{Adj}_c \text{ for } some \text{ shortest } 3\text{-cycles on } T^6$

Förste, G.H. '10

G.H., Ripka, Staessens '12

$IIA/\Omega \mathcal{R}$ on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_6'$ with discrete torsion: geometry

Förste, G.H. JHEP 1101 (2011) 091

$$\mathbb{Z}_{2} \times \mathbb{Z}_{6}^{\prime} \text{ generators: } \vec{v} = \frac{1}{2}(1, -1, 0) \quad \vec{w}^{\prime} = \frac{1}{6}(-2, 1, 1) \quad \text{on } SU(3)^{3}$$

$$\begin{array}{c} \vec{r} \\ \vec{r$$

$T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: RR tadpoles, SUSY & relations

Förste, G.H. '10

lattice	Bulk RR tadpole cancellation	Bulk SUSY: nec. & suff.		
	$\sum_{a} N_{a} \left(\Pi_{a} + \Pi_{a}' \right) = 4 \Pi_{O6}$	$\int_{\Pi_a} \operatorname{Im}(\Omega) = 0$	$\int_{\Pi_a} \operatorname{Re}(\Omega) > 0$	
AAA	$\sum_{a} N_{a} \left(2 X_{a} + Y_{a} \right) = 4 \left(\eta_{\Omega \mathcal{R}} + 3 \sum_{i=1}^{3} \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(i)}} \right)$	$Y_a = 0$	$2X_a + Y_a > 0$	
ABB	$\sum_{a} N_{a} (X_{a} + 2 Y_{a}) = 4 \left(\eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(1)}} + 3 \sum_{i=0,2,3} \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(i)}} \right)$	$X_a = 0$	$X_a + 2 Y_a > 0$	
AAB	$\sum_{a} N_{a} \left(X_{a} + Y_{a} \right) = 4 \left(3 \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(3)}} + \sum_{i=0}^{2} \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(i)}} \right)$	$Y_a - X_a = 0$	$X_a + Y_a > 0$	
BBB	$\sum_{a} N_{a} Y_{a} = 4 \left(3 \eta_{\Omega \mathcal{R}} + \sum_{i=1}^{3} \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(i)}} \right)$	$2X_a + Y_a = 0$	$Y_a > 0$	

 $\eta_{\Omega\mathcal{R}\mathbb{Z}_2^{(i)}}=\pm 1$ for ordinary/exotic O6-planes

- pairwise relations by $(\frac{\pi}{3}, 0, 0)$ or $(0, 0, \frac{\pi}{3})$ rotation
- $(X_a, Y_a)^{\text{AAA}} = (X_a + Y_a, -X_a)^{\text{ABB}}_{\text{BBB}} \text{ and } \frac{\Omega \mathcal{R}}{\Omega \mathcal{R} \mathbb{Z}_2^{(2)}} \leftrightarrow \frac{\Omega \mathcal{R} \mathbb{Z}_2^{(1/3)}}{\Omega \mathcal{R} \mathbb{Z}_2^{(3/1)}}$
- pairwise relations valid for G.H., Ripka, Staessens '12

- full massless spectra
- field theory @ 1-loop (gauge couplings, Kähler metrics by CFT)
- maximal SUSY rank

$$\mathbf{AAA} = \left\{ \begin{array}{cc} \mathbf{16} & \eta_{\Omega \mathcal{R}} = -1 \\ \mathbf{8} & \text{else} \end{array} \right. \mathbf{BBB} = \left\{ \begin{array}{cc} \mathbf{8} & \text{else} \\ \mathbf{0} & \eta_{\Omega \mathcal{R}} = -1 \end{array} \right.$$

Gabriele Honecker From Rigid D-Branes to Particle Physics Open strings on AAA:

- ► Adj_a ~→ only possible for the 2 shortest *bulk* cycles at angles (0,0,0) and $(\frac{\pi}{3},0,-\frac{\pi}{3})$ & special choices of $(\vec{\sigma},\vec{\tau})$ $I_{a(\omega a)} + \sum_{i=1}^{3} I_{a(\omega a)}^{\mathbb{Z}_{2}^{(i)}}(\vec{\sigma},\vec{\tau}) \stackrel{!}{=} 0$
- [Sym + h.c.] and [Anti + h.c.] of QCD stack \rightarrow only the shortest *bulk* cycle at $(\frac{\pi}{3}, 0, -\frac{\pi}{3})$ and $\eta_{\Omega R} = -1$
- ▶ 3 generations \rightsquigarrow same shortest *bulk* cycle for $SU(2)_L$ stack

Comparison with **BBB**:

- ► no Adj_a √
- no $[Sym_a + h.c.]$ or $[Anti_a + h.c] \notin$

A typical Pati-Salam model on $T^6/\mathbb{Z}_2 imes \mathbb{Z}_6'$

- ▶ a, b, c at $(\frac{\pi}{3}, 0, -\frac{\pi}{3})$, d at $(\frac{\pi}{6}, -\frac{\pi}{2}, \frac{\pi}{3})$ e at (0, 0, 0)
- $U(1)^5$ anomalous & massive at M_{string}
- ► $SU(4) \times SU(2)_L \times SU(2)_R \times SU(2) \times SU(2)$ with
 - 3 generations of quarks + leptons
 - ▶ 1 Higgs (H_d, H_u)
 - Adj on $a, b, c, e; 1 \times Adj_d$

A typical Pati-Salam model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: spectrum

 $SU(4) \times SU(2)_L \times SU(2)_R \times SU(2) \times SU(2) \times U(1)^5_{\text{massive}}$

Standard Model particles plus one Higgs

 $(4, \overline{2}, 1; 1, 1) + 2(4, 2, 1; 1, 1) + (\overline{4}, 1, 2; 1, 1) + 2(\overline{4}, 1, \overline{2}; 1, 1) + (1, 2, \overline{2}; 1, 1)$

 → one massive generation at leading order by charge selection rules

► chiral w.r.t. anomalous $U(1)_{\text{massive}}^5$

 $(1,2,1;\overline{2},1)+3(1,\overline{2},1;\overline{2},1)+(1,\overline{2},1;1,\overline{2})+(1,1,\overline{2};2,1)+3(1,1,2;2,1)+(1,1,2;1,2)$

but non-chiral w.r.t. $SU(4) \times SU(2)_L \times SU(2)_R$

• non-chiral w.r.t. to full $U(4) \times U(2)^4$

 $2 \left[(4,1,1;\overline{2},1) + h.c. \right] + \left[(1,1,1;2,2) + h.c. \right] + (1,1,1;4_{Adj},1) \\ + 2 \left[(1,1,1;3_{S},1) + (1,1,1;1_{A},1) + h.c. \right] + \left[(1,1,1;1,3_{S}) + (1,1,1;1,1_{A}) + h.c. \right]$

Yukawa interactions

► charge selection rules not sufficient on T^6/\mathbb{Z}_{2N} , $T^6/\mathbb{Z}_2 \times \mathbb{Z}_{2M}$ due to various sectors $a(\omega^k b)_{k \in \{0,1,2\}}$ G.H., Vanhoof '12

G.H., Ripka, Staessens '12

- Pati-Salam model: one heavy generation by
 - $W_{Q_L^{(3)}Q_R^{(3)}H} \sim e^{-\sum_{i=1}^3 v_i/8}$ with Kähler moduli $v_i \equiv \frac{\sqrt{3}}{2} \frac{r_i^2}{\alpha'}$
- ▶ non-chiral [(4,1,1;2,1) + (1,1,1;2,2) + (1,1,1;1_A,1) + h.c.] massive via couplings to (1,1,1;4_{Adj},1)
- several types of (1, 2, 2, 1, 1) massive through 3-point couplings among each other and with the Higgs
- other masses through higher order or non-perturbative (instanton) couplings

Gauge couplings @ 1-loop

► gravitational coupling
$$\rightsquigarrow \frac{M_{\text{Planck}}}{M_{\text{string}}^2} = \frac{4\pi}{g_{\text{string}}^2} v_1 v_2 v_3$$

► tree-level gauge coupling
 $\frac{4\pi}{g_{SU(N_a),\text{tree}}^2} = 2\pi \Re (f_{SU(N_a)}^{\text{tree}}) = \frac{1}{4} \frac{1}{g_{\text{string}}} \frac{\prod_{i=1}^3 L_a^{(i)}}{\ell_s^3}$
► for the typical Pati-Salam model:
 $\frac{4\pi}{g_{SU(N_{a,b,c,e}),\text{tree}}^2} = \frac{1}{4g_{\text{string}}} \frac{r_1 r_2 r_3}{\ell_s^3} = \frac{1}{3^{3/4 \cdot 32\pi^3}} \frac{M_{\text{Planck}}}{M_{\text{string}}} \approx 4 \cdot 10^{-4} \frac{M_{\text{Planck}}}{M_{\text{string}}}$

. .2

Mass scales and values of the string coupling												
M _{string}	M _{string} 1 TeV 10 ¹² GeV 10 ¹⁶ GeV											
Østring	10-3	0.01	0.1	0.5	10^{-3}	10 ⁻³ 0.01 0.1 0.5			10-3	0.01	0.1	0.5
v ₁ v ₂ v ₃	$r_1 v_2 v_3 = 8 \cdot 10^{24} 8 \cdot 10^{26} 8 \cdot 10^{28} 2 \cdot 10^{30}$			$\begin{vmatrix} 8 \cdot 10^6 & 8 \cdot 10^8 & 8 \cdot 10^{10} & 2 \cdot 10^{12} \\ \end{vmatrix} 0.08 \qquad 8$			800	$2 \cdot 10^4$				
$4\pi/g_{a,\text{tree}}^2$ $4\cdot 10^{12}$				$4 \cdot 10^{3}$			$4 \cdot 10^{-1}$					

• gauge coupling unification @ tree-level for $M_{\rm string} \sim M_{GUT}$

Gauge coupling unification or low $M_{\rm string}$

•
$$\frac{4\pi}{g_{SU(N_a),\text{tree}}^2} \approx 4 \cdot 10^{-4} \frac{M_{\text{Planck}}}{M_{\text{string}}}$$
 with $\frac{M_{\text{Planck}}}{M_{\text{string}}} = \frac{\sqrt{4\pi}}{g_{\text{string}}} \sqrt{v_1 v_2 v_3}$

Mass scales and values of the string coupling												
M _{string} 1 TeV 10 ¹² GeV 10 ¹⁶ GeV												
g _{string}	10-3	0.01	0.1	0.5	10-3	0.01	0.1	0.5	10-3	0.01	0.1	0.5
v ₁ v ₂ v ₃	$8 \cdot 10^{24} \hspace{0.1 cm} 8 \cdot 10^{26} \hspace{0.1 cm} 8 \cdot 10^{28} \hspace{0.1 cm} 2 \cdot 10^{30}$			$8 \cdot 10^6$	$8 \cdot 10^8$	$8 \cdot 10^{10}$	$2 \cdot 10^{12}$	0.08 8 800 2 · 1			$2 \cdot 10^4$	
$4\pi/g_{a,tree}^2$	$\pi/g_{a,tree}^2$ 4 · 10 ¹²				$4 \cdot 10^3$			$4 \cdot 10^{-1}$				

one-loop corrections contain

$$\Re\left(\delta_{b}^{1\text{-loop}}f_{SU(N_{a})}\right) \supset -\frac{\tilde{b}_{ab}^{\mathcal{A},(i)}}{4\pi^{2}}\ln\left(e^{-\pi(\sigma_{ab}^{i})^{2}v_{i}/4}\frac{\vartheta_{1}(\frac{\tau_{ab}^{'}-i\sigma_{ab}^{'}v_{i}}{2},iv_{i})}{\eta(iv_{i})}\right) \overset{v_{i}\to\infty}{\sim} v_{i}$$

► for the typical Pati-Salam model:

$$2\pi\Re\left(\delta^{1-\text{loop}}f_{SU(N_x)}\right) \sim \begin{cases} \frac{10(v_1+v_2)-7v_3}{48} - \frac{4\ln 2}{\pi} & x = a\\ \frac{8v_2/1-3v_3}{24} - \frac{41\ln 2}{12\pi} & b/c \end{cases}$$
with negative contribution from v_3
► unification **0** 1-loop for $v_{1/2} = \frac{v_3}{4} + \frac{7\ln(2)}{\pi}$

$$r$$
 or $M_{
m string}\sim {
m TeV}$ for $v_{1/2}\sim 10^6$, $v_3\sim 10^{13}$, $g_{
m string}\sim 10^{-3}$

Conclusions

- ▶ Rigid D6-branes on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_{2M}$ with discrete torsion
 - reduction of closed & open string moduli
 - 2M ≠ 2: bulk cycles have Z_{2M} images
 → selection rules on Yukawa interactions (≠ T⁶)

G.H., Vanhoof JHEP 1204 (2012) 085

- > 2M = 6': <u>SU(5)</u> GUTs, only local MSSM and L-R models
- 2M = 6: *a priori* less constrained ... to be worked out
- \blacktriangleright new maps among lattice orientations \rightsquigarrow economise SM search

G.H., Ripka, Staessens arXiv:1209.3010 [hep-th]

- ► Example: global Pati-Salam model on T⁶/Z₂ × Z₆[']
 - Adj moduli
 - some vector-like states
 - perturbative Yukawa couplings for one particle generation only
 - ▶ gauge coupling unification at $M_{\rm string} \sim M_{GUT}$ possible @ 1-loop
 - or $M_{
 m string} \sim 1$ TeV for LARGE unisotropic volumes

G.H., Ripka, Staessens arXiv:1209.3010 [hep-th]

Technical details

Closed string sector on **AAA** with exotic $\Omega \mathcal{R}$ -plane:

- ▶ h₂₁ = 15 complex structures (ℤ₂)
- ▶ $h_{11}^- = 14$ Kähler moduli (3 bulk + 3 \mathbb{Z}_6 + 8 \mathbb{Z}_3)
- ▶ $h_{11}^+ = 1$ vector/dark photon (\mathbb{Z}_3) \rightsquigarrow mixing with open U(1)s
 - ► typical for D6-branes on T⁶/Z₂ × Z_{2M} with η = −1: vectors only in Z₆ and Z₃ twisted sectors
 - for T⁶/Z₂ × Z_{2M} with η = +1 and T⁶/Z_{2N}: vectors in Z₂ (and bulk) sectors

Förste, G.H. '10

Exceptional wrappings $(x_{lpha,a}^{(i)}, y_{lpha,a}^{(i)})$							
Ι	II						
$(z^{(i)}_{lpha,a} \; n^i_a \;,\; z^{(i)}_{lpha,a} \; m^i_a)$	$\left(-z_{0,a}^{(i)} n_{a}^{i}+\left(z_{\alpha,a}^{(i)}-z_{0,a}^{(i)}\right) m_{a}^{i}, \left(z_{0,a}^{(i)}-z_{\alpha,a}^{(i)}\right) n^{i}-z_{\alpha,a}^{(i)} m_{a}^{i}\right)$						
$(z^{(i)}_{lpha,a}\;m^i_a\;,\;-z^{(i)}_{lpha,a}\;(n^i_a+m^i_a))$	$\left((z_{0,a}^{(i)}-z_{\alpha,a}^{(i)}) n_a^i-z_{\alpha,a}^{(i)} m^i , z_{0,a}^{(i)} m_a^i+z_{\alpha,a}^{(i)} n_a^i\right)$						
$\left(-z^{(i)}_{lpha, a}\left(n^i_a+m^i_a ight),\; z^{(i)}_{lpha, a}\;n^i_a ight)$	$\left(\hat{z}_{\alpha,a}^{(i)} n_{a}^{i} + z_{0,a}^{(i)} m_{a}^{i} , -z_{0,a}^{(i)} n_{a}^{i} + (z_{\alpha,a}^{(i)} - z_{0,a}^{(i)}) m_{a}^{i} \right)$						

- with signs $z_{0,a}^{(i)} \equiv (-1)^{\tau_a^{\mathbb{Z}_2^{(i)}}}$ and $z_{\alpha,a}^{(i)} \in \{(-1)^{\tau_a^{\mathbb{Z}_2^{(i)}} + \tau_a^j}, (-1)^{\tau_a^{\mathbb{Z}_2^{(i)}} + \tau_a^k}, (-1)^{\tau_a^{\mathbb{Z}_2^{(i)}} + \tau_a^j + \tau_a^k}\}$
- Type I: from a single fixed point II: sum of two fixed points
 each Π^{Z⁽ⁱ⁾}₂ receives contributions from only three α ∈ {1...5} depending on σ^j_a, σ^k_a
 - \rightsquigarrow constraints on cancellation of \mathbb{Z}_2 twisted tadpoles

One-loop	One-loop corrections to holomorphic gauge kinetic functions on $T^6/\mathbb{Z}_2 imes \mathbb{Z}_{2M}$ with discrete torsion								
$(\phi_{ab}^{(1)}, \phi_{ab}^{(2)}, \phi_{ab}^{(3)})$	$\Re\left(\delta_b^{1-loop,\mathcal{A}}f_{SU(N_a)}\right)$	$\Re\left(\delta_{b=a'}^{1\text{-loop},\mathcal{M}}\mathbf{f}_{SU(N_a)}\right)$							
(0,0,0)	$-\sum_{i=1}^{3} \frac{b_{a}^{\mathcal{A},(i)}}{4\pi^{2}} \ln \eta(iv_{i})$	$-\sum_{i=1}^{3} \frac{b_{aa'}^{\mathcal{M},(i)}}{4\pi^2} \ln \eta(i\tilde{v}_i) - \frac{b_{aa'}^{\mathcal{M}}\ln(2)}{8\pi^2}$							
	$-\sum_{i=1}^{3} \frac{\tilde{b}_{ab}^{\mathcal{A},(i)} \left(1-\delta \frac{\sigma_{b}^{i}}{\sigma_{a}^{j}} \delta \frac{\tau_{b}^{i}}{\tau_{a}^{j}}\right)}{4\pi^{2}} \ln \left(e^{-\pi (\sigma_{ab}^{i})^{2} v_{i}/4} \frac{\vartheta_{1} (\frac{\tau_{ab}^{i}-i\sigma_{ab}^{i} v_{i}}{2}, iv_{i})}{\eta (iv_{i})}\right)$	(for $b_i = 0$ or $(\sigma_a^i, \tau_a^i) = (0, 0)$)							
$(0^{(i)}, \phi_{ab}^{(j)}, \phi_{ab}^{(k)})$	$-rac{b_{ab}^{A}}{4\pi^2} \ln \eta(iv_i)$	$-rac{b_{aa'}^{\mathcal{M}}}{4\pi^2}\ln\eta(i ilde{v}_i)$							
	$-\frac{\tilde{b}_{ab}^{\mathcal{A},(i)}\left(1-\delta_{a_{b}^{'}}^{\sigma_{b}^{'}}\delta_{j}^{\tau_{b}^{'}}\right)}{4\pi^{2}}\ln\left(e^{-\pi(\sigma_{ab}^{i})^{2}v_{i}^{'}/4}\frac{\vartheta_{1}(\frac{\tau_{ab}^{'}-i\sigma_{ab}^{'}v_{i}^{'}}{2b}v_{i}^{'},iv_{i}^{'})}{\eta(iv_{i})}\right)$	(for $b_i = 0$ or $(\sigma^i_a, \tau^i_a) = (0, 0)$)							
	$+\sum_{l=j,k} \frac{N_b \frac{j_{ab}^{(2)}}{32\pi^2}}{32\pi^2} \left(\frac{\operatorname{sgn}(\phi_{ab}^{(l)})}{2} - \phi_{ab}^{(l)} \right)$	$+ \frac{\ln(2)}{32\pi^2} \sum_{[m:a\perp \Omega \mathcal{R} \mathbb{Z}_2^{(m)} \text{ on } \mathcal{T}_{(i)}^2]} \eta_{\Omega \mathcal{R} \mathbb{Z}_2^{(m)}} \tilde{I}_a^{\Omega \mathcal{R} \mathbb{Z}_2^{(m)}} $							
$(\phi^{(1)},\phi^{(2)},\phi^{(3)})$	$\sum_{l=1}^{3} \frac{N_b I_{ab}^{Z_2^{(l)}}}{32\pi^2} \left(\frac{\operatorname{sgn}(\phi_{ab}^{(l)}) + \operatorname{sgn}(I_{ab})}{2} - \phi_{ab}^{(l)} \right)$	$rac{\ln(2)}{32\pi^2}\sum_{m=0}^3\eta_{\Omega\mathcal{R}\mathbb{Z}_2^{(m)}} \tilde{I}_a^{\Omega\mathcal{R}\mathbb{Z}_2^{(m)}} $							

- Annulus contributions known for all configurations of tori b_i, displacements σⁱ & Wilson lines τⁱ
- ► Möbius strip contributions only derived from first principles (and correct for) $b_i \sigma^i \tau^i = 0$ G.H., Ripka, Staessens '12

	Kähler metrics and beta function coefficients on $T^6/(\mathbb{Z}_2 imes \mathbb{Z}_{2M} imes \Omega \mathcal{R})$ with discrete torsion										
$(\phi_{ab}^{(1)}, \phi_{ab}^{(2)}, \phi_{ab}^{(3)})$	K _R ,	$b_{ab}^{\mathcal{A}}$	$b^{\mathcal{M}}_{aa'}$ (only for $b=a'$)								
(0,0,0)	$\frac{g_{\text{string}}}{v_1 v_2 v_3} \sqrt{2\pi^3} \frac{L_s^{(l)}}{\ell_s}$	$-\frac{N_b}{4}\sum_{i=1}^{3} \delta_{\sigma_a^i}^{\sigma_b^i} \delta_{\tau_a^i}^{\tau_b^i} \delta_{ab}^{\mathbb{Z}_2^{(i)},(j\cdot k)}$	$-\frac{1}{2}\sum_{j < k} \sum_{m=0}^{3} \eta_{\Omega \mathcal{R} \mathbb{Z}_{2}^{(m)}} (-1)^{2b_{i} \sigma_{a}^{j} \tau_{a}^{j}} \tilde{I}_{a}^{\Omega \mathcal{R} \mathbb{Z}_{2}^{(m)}, (j \cdot k)} $								
$(0^{(i)}, \phi, -\phi)$	$\frac{g_{\rm string}}{v_1 v_2 v_3} \sqrt{2\pi}^3 \frac{L_s^{(i)}}{\ell_s}$	$\frac{\frac{N_b \delta_{\sigma_b^j}^{\sigma_b^j} \delta_{\tau_b^j}^{\tau_b^j}}{4} \left(I_{ab}^{(j\cdot k)} - I_{ab}^{\mathbb{Z}_2^{(j)},(j\cdot k)} \right)$	$-\frac{1}{2}\sum_{\substack{m \in \{0,\ldots,3\} \text{ with}\\ a \uparrow \uparrow \Omega \in \mathbb{Z}_{2}^{(m)} \text{ on } \mathcal{T}_{(j)}^{2}}} \eta_{\Omega \in \mathbb{Z}_{2}^{(m)}} (-1)^{2b_{i} \sigma_{a}^{i} \tau_{a}^{j}} \tilde{I}_{a}^{\Omega \in \mathbb{Z}_{2}^{(m)}, (j \cdot k)} $								
$(\phi_{ab}^{(1)}, \phi_{ab}^{(2)}, \phi_{ab}^{(3)}) \sum_{i} \phi_{ab}^{(i)} = 0}$	$\frac{g_{\text{string}}}{v_1 v_2 v_3} \prod_{i=1}^3 \frac{\Gamma(\phi_{ab}^{(i)})}{\Gamma(1- \phi_{ab}^{(i)})} - \frac{\frac{\operatorname{sgn}(\phi_{ab}^{(i)})}{2\operatorname{sgn}(l_{ab})}}{\operatorname{sgn}(l_{ab})}$	$\frac{N_b}{8} \left(I_{ab} + \operatorname{sgn}(I_{ab}) \sum_{i=1}^3 I_{ab}^{\mathbb{Z}_2^{(i)}} \right)$	$\tfrac{1}{4} \sum_{m=0}^{3} c_a^{\Omega \mathcal{R} \mathbb{Z}_2^{(m)}} \eta_{\Omega \mathcal{R} \mathbb{Z}_2^{(m)}} \tilde{I}_a^{\Omega \mathcal{R} \mathbb{Z}_2^{(m)}} $								

- ► Kähler metrics enter physical Yukawa couplings $Y_{ijk} = (K_{xy}K_{yz}K_{zx})^{-1/2} e^{\kappa_4^2 \mathcal{K}/2} W_{ijk}$
- beta function coefficients needed
 - for derivation of non-chiral matter spectrum
 - ▶ as prefactors in 1-loop correction to hol. gauge kinetic function
- Factor (−1)^{2b_i σⁱ_a τⁱ_a in Ω*R*-invariant configurations required for consistency with counting of Chan-Paton labels}

```
G.H., Ripka, Staessens '12
```