DESY Theory Workshop

Parallel Session 2: Cosmology & Astroparticle Physics

The 130GeV gamma-ray line and DM model-building constraints from continuum gamma rays, radio and antiproton data

Masaki Asano, Torsten Bringmann, Günter Sigl & Martin Vollmann II. Institut für Theoretische Physik Universität Hamburg

Outline

- The "Weniger's" 130GeV gamma-ray line
- Consequences on further observable phenomena
- Optical Theorem
- Continuum Gamma Ray, Antiproton & Radio Constraints
- Derived constraints on $Im(M_{i \to j})$
- Applications
- Conclusions

The "Weniger's" 130GeV Line

(Quasi-)monochromatic γ-ray line at the GC ⇒ Smokinggun signature for indirect DM searches

- Weniger's analysis (1204.2797):
 - 43 months of Fermi-LAT data
 - Optimized target regions
 - \rightarrow 3.2 σ Gamma-ray line with E_{γ} = 130GeV
- If interpreted as $\chi\chi \to \gamma\gamma$, γZ or $\gamma H \Rightarrow m_{\chi} = \{130 \text{GeV}, 145 \text{GeV}, 155 \text{GeV}\} \& \sigma v \sim 10^{-27} \text{cm}^3/\text{s}$
- DM interpretation on debate

Consequences on further observable phenomena

- $\chi\chi \rightarrow \gamma\gamma$, $\gamma Z \& \gamma H \Rightarrow$ 1-loop processes (χ 's are electrically neutral)
- Some questions you might be asking yourselves:
 - What kind of particles run on the loops?
 - level annihilation cross sections related to the line's?
 - Can we derive such relations in a modelindependent way?
 - 'g' "Generalized" Optical Theorem (see Abazajian et al. Hep-ph/1111.2835)

Optical Theorem

We make use of the "generalized" optical theorem

$$\Im\left(\begin{array}{c} \chi \\ \hline I \\ \hline \chi \\ \hline \end{array}\right) = \sum\left(\begin{array}{c} \chi \\ \hline I \\ \hline \end{array}\right) \left(\begin{array}{c} I \\ \hline I \\ \hline \end{array}\right) \gamma, Z, H$$

- With two conditions, though:
 - Interaction must respect CP and Lorentz invariance
 - Initial $|i\rangle$ and final $|f\rangle$ states must be eigenstates of the CM total angular momentum J,M.

Remark: The case where the initial and final states are identical yields to the familiar optical theorem

Optical Theorem (Cont.)

The master formula

$$r_{i o f} \equiv rac{\left(\Im\left[\mathcal{M}_{i o f}
ight]
ight)^2}{\left|\mathcal{M}_{i o f}
ight|^2} \propto rac{\sum_{I} \sigma_{i o I} \sum_{I} \sigma_{f o I}}{\sigma_{i o f}}$$

constraints $Im(M_{i \to j})/M_{i \to j}$, since as input we have

 $\sum_{I} \sigma_{f \to I}$ from the Standard Model

 $\sum_{I} \sigma_{i \to I}$ from the continuum γ -ray, antiproton and radio constraints

The 130GeV line & DM model-

building constraints

 $\sigma_{i \to f}$ from Weniger's ansatz

Computation of tree-level amplitudes

- Initial state \Longrightarrow s-wave (L=0)
 - → Squared amplitudes of e.g. p-waves are proportional to β^2 (typically ~ 10⁻⁶)
- J & CP conservation $\Longrightarrow |f\rangle (=|\gamma\gamma\rangle, |\gamma Z\rangle \text{ or } |\gamma H\rangle) \text{ share}$ the associated (J & CP) quantum numbers with $|i\rangle$ (= $|\chi\chi\rangle$) and also with $|I\rangle$

Martin Vollmann

Computation of tree-level Amplitudes (Cont.)

$M_{f\rightarrow l}$ computation

- Obtain the 4-momentum space amplitudes by means of Feynman rules
- Integrate these times appropriate spherical harmonics to get definite L states

The 130GeV line & DM model-

building constraints

Use the appropriate Clebsch-Gordan coeficients to get definite S states

Continuum y-ray, Antiproton & Radio Constraints

SM products of DM annihilations may fragment into stable particles (including γ , e^{\pm} , p^{\pm} ,...) which can (among many other processes)

- Undergo diffusion
- Interact with the low-energy radiation background (e.g. ICS)
- Get bent in the Galactic Magnetic Field and emit synchrotron radiation

Relatively well understood continuum y spectrum, **Antiproton fluxes and Synchrotron radiation**

Dark Matter Profile

$$\rho_{\chi}(r) = \rho_{\odot} \exp\left(\frac{2}{\alpha} \frac{R_{\odot}^{\alpha}}{r_{s}^{\alpha}}\right) \exp\left(-\frac{2}{\alpha} \frac{r^{\alpha}}{r_{s}^{\alpha}}\right)$$

where $\alpha = 0.17$, $r_s = 20 \,\mathrm{kpc}$, $R_{\odot} = 8.5 \,\mathrm{kpc}$ & $\rho_{\odot} = 0.4 \,\mathrm{GeV}\,\mathrm{cm}^{-3}$

The 130GeV line & DM model-

building constraints

Continuum Gamma Rays

We use the most recent sets of constraints

- Dwarf spheroidal galaxies ([Fermi-LAT collab.] 1108.3546)
 - They adopt NFW profiles respect to the centers of the dwarfs
- Galactic Center (Cholis et al. 1207.1468)
 - Slightly different DM profile

- Constraints scale with
$$J \equiv \int_{\Delta\Omega} d\Omega \int_{1/2} \mathrm{d}s \rho^2(r)$$

→ Multiply by a factor

Page 11/16

Antiprotons

We adopt two different CR propagation models (see Evoli et al. [astro-ph.HE 1108.0664])

- 'KRA' (*L*=4kpc,)
- 'CON' (L=10kpc)
- With help of DarkSUSY obtain the primary antiproton flux coming from DM annihilations
- Prescription to constrain DM annihilation rates:

Minimally expected Astrophysical background + Signal < PAMELA data + 3σ

Synchrotron Radiation

- e[±] bent in the Galactic Magnetic Field emit synchrotron radiation at radio frequencies
- Galactic Magnetic Field

$$B(r) = 7.2 \, \mathrm{mG} imes egin{cases} (R_{
m acc}/r)^{5/4} & r < R_{
m acc} \ (R_{
m acc}/r)^2 & R_{
m acc} < r \lesssim 100 R_{
m acc} \ 10^{-4} & r \gtrsim 100 R_{
m acc} \end{cases}$$

where $R_{\rm acc} \approx 0.04 \, \rm pc$ is the accretion radius of the central SMBH

 Synchrotron radiation spectrum for energy-loss dominated distribution of e^{\pm}

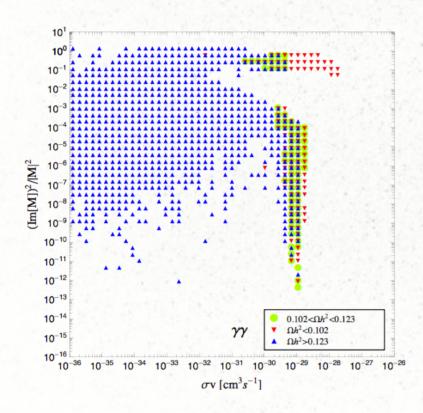
$$\nu \frac{\mathrm{d}W_{\mathrm{syn.}}}{\mathrm{d}\nu} \approx \frac{(\sigma v)_{\chi\chi\to\mathrm{SM}}}{2M_{\chi}^2} \int_{\mathrm{cone}|r} E_c \rho_{\chi}^2(r) N_e(E_c) \,\mathrm{d}V$$

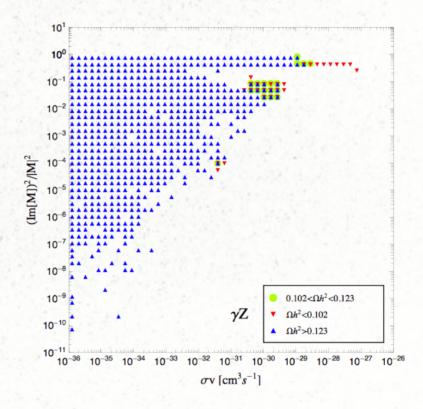
• Prescription:
$$\nu \frac{dW_{\text{syn.}}}{d\nu}\Big|_{\nu=408\,\text{MHz}} < 50\,\text{mJy}$$

Preliminary Constraints on $Im(M_{i \rightarrow i})$

Majorana WIMP	cont. gamma (GC)	${ m antiprotons} \ { m ('KRA',}\ L=4{ m kpc})$	synchrotron
$b\bar{b}$	$1.0 \times 10^{-5} \ (3.1 \times 10^{-6})$	$5.1 \times 10^{-6} \ (1.6 \times 10^{-6})$	$1.37 \times 10^{-5} \ (4.14 \times 10^{-6})$
$ au^+ au^-$	$4.9 \times 10^{-5} \ (2.0 \times 10^{-7})$		$9.03 \times 10^{-5} \ (3.95 \times 10^{-7})$
$\mu^+\mu^-$	$8.7 \times 10^{-7} \ (3.3 \times 10^{-9})$		$5.66 \times 10^{-7} \ (2.57 \times 10^{-9})$
e^+e^-	$2.9 \times 10^{-11} \ (8.7 \times 10^{-14})$		$3.34 \times 10^{-11} \ (1.54 \times 10^{-13})$
W^+W^-	0.037 (0.21)	0.014 (0.083)	0.046 (0.026)

Bounds on $r_{i\to i}$ for $m_{\nu}=130\,\mathrm{GeV}$ (145 GeV). Loops dominated by the mentioned particle/antiparticle pairs


The 130GeV line & DM model-


building constraints

Page 14/16

Applications to model-building

Using DarkSUSY scan over several supersymmetric models and obtain

Conclusions

- Interesting debate on the 130GeV gamma-ray line at the GC
- If proven right, theoretical implications rule out a number of models with DM candidates
- Optical Theorem proves useful for this task.
 - Nonetheless, if Weniger's theory is proven wrong, it is still a very powerful tool to assess new physics
- Even though several SUSY theories seem not to explain all the observations + the gamma-ray line, there is still room for models consistent with both of them
 - However, DM would not be thermally produced