A 126 GeV Higgs boson with enhanced γγ rate in Supersymmetry

Lisa Zeune

Theory Workshop 2012, DESY, Hamburg

September 27, 2012

Based on [1207.1096] with R.Benbrik, S.Heinemeyer, M.Gomez, O.Stål, G.Weiglein and on work in progress with P. Bechtle, S.Heinemeyer, O.Stål, T. Stefaniak, G.Weiglein

Decay rates

Higgs-like particles with mass of 126 GeV observed

- ATLAS and CMS give best fit signal strength $R = (\sigma \times BR)/(\sigma \times BR)_{SM}$
- Consistent with the SM

However:

- Enhanced γγ signal
- Nothing seen in ττ and bb mode
 - What about Tevatron?
- Many new physics alternatives possible

Higgs sector in the MSSM

Two Higgs doublets

$$H_1 = \begin{pmatrix} v_1 + \frac{1}{\sqrt{2}} (\phi_1 - i\chi_1) \\ -\phi_1^- \end{pmatrix}, \quad H_2 = \begin{pmatrix} \phi_2^+ \\ v_2 + \frac{1}{\sqrt{2}} (\phi_2 + i\chi_2) \end{pmatrix}$$

• 5 physical Higgs bosons: 2 CP-even, 1 CP-odd, 2 charged

$$\begin{pmatrix} \mathbf{H} \\ \mathbf{h} \end{pmatrix} = U_{\alpha} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad \begin{pmatrix} G \\ \mathbf{A} \end{pmatrix} = U_{\beta} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \quad \begin{pmatrix} G^{\pm} \\ \mathbf{H}^{\pm} \end{pmatrix} = U_{\beta} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

- Tree level: $M_h \leq M_Z$
- Large radiative corrections: $M_h \lesssim 135 \text{ GeV}$
- $\alpha \rightarrow \alpha_{\text{eff}}$ approximation beyond LO

In the MSSM the Higgs signal at 126 GeV can be the light (h) or the heavy (H) CP-even Higgs

How well does the MSSM describe the Higgs signal?

- Scanning over 7 MSSM parameters (~10 million points)
- Standard χ^2 method:

$$\chi^{2} = \sum_{i=1}^{N_{obs}} \frac{(R_{i} - \hat{R}_{i})^{2}}{\sigma_{i}^{2}} + \frac{(M_{h} - M_{h}^{ref})^{2}}{\Delta M_{h}^{2}} \qquad \begin{array}{l} M_{h}^{ref} = 125.7 \text{ GeV} \\ \Delta M_{h} = 1 \text{ GeV} \\ \text{SM: } R_{i} = 1 \end{array}$$
$$N_{obs} = N_{\text{ATLAS}} + N_{\text{CMS}}(+N_{\text{others}})$$

Tevatron data not included yet!

- χ^2 calculated with/without B-physics observables and $(g-2)_{\mu}$
- MSSM Higgs decay rates calculated with channel efficiencies as weights \checkmark Weights available only for $\gamma\gamma$ Naive prediction for other channels

$$R_{xx} = \frac{\sum_{k} w_{k} \sigma_{k} \times BR(h \to xx)}{\sum_{k} w_{k} \sigma_{k}^{SM} \times BR(h \to xx)^{SM}}$$

LHC data

Light Higgs case – Best fit for LHC rates

Modified decay rates

 Which regions describe data best?

- Favored region in the MSSM: Enhanced γγ rate, suppressed bb and ττ rates
- Favored region might change when Tevatron data included

All points $121 < M_h < 129 \text{ GeV}$

HiggsBounds allowed

 $\Delta \chi^2 < 2.30$

 $\Delta \chi^2 < 5.99$

Enhancing the $\gamma\gamma$ rate in the MSSM

Two mechanisms to enhance the $h \rightarrow \gamma \gamma$ rate in the MSSM

1. Light Staus

- SUSY contributions to the partial width
 - → Enhancement up to 50% of $\Gamma (h \rightarrow \gamma \gamma)$

- Main contribution from light staus [1112.3336], [1205.5842]
- Implies staus with mass close to PDG bound (> 81.2 GeV)
- Small effect on other decay rates

Lisa Zeune | A 126 GeV Higgs boson with enhanced yy rate in Supersymmetry | Theory workshop 2012 | Page 8

Enhancing the $\gamma\gamma$ rate in the MSSM

2. Suppression of the total width

- Suppression of dominant decay mode $h \rightarrow bb$
- Reduced hbb coupling in the MSSM

$$\frac{g_{hb\bar{b}}}{g_{H_{\rm SM}b\bar{b}}} = \frac{1}{1 + \Delta_b} \left(-\frac{\sin \alpha_{\rm eff}}{\cos \beta} + \Delta_b \frac{\cos \alpha_{\rm eff}}{\sin \beta} \right)$$
Loop-induced SUSY correction
Favored region has
intermediate-large
 Δ_b corrections

- Largest bb suppression for
 - Large X_t
 - Large μ (1-3 TeV)

Heavy Higgs case – Best fit for LHC rates

Heavy Higgs case

- Allowed region in parameter space limited
 - Relatively low M_A
 - \rightarrow Other MSSM Higgs states should be accessible soon
- Additional light CP-even Higgs
 - Reduced couplings to vector bosons
 → can be below LEP limit for SM Higgs
- Best fit decay rates similar to the light Higgs case

Page 11

Higgs sector in the NMSSM

 Motivation for NMSSM: Solved 'µ-problem' of the MSSM

$$W_{(2)} = \mu \hat{H}_2 \hat{H}_1 \to \lambda \hat{S} \hat{H}_2 \hat{H}_1$$

 $\rightarrow \mu_{\text{eff}} = \lambda v_s$ naturally of the EW scale

Additional Higgs singlet

$$S = v_s + \frac{1}{\sqrt{2}} \left(\phi_s + \mathrm{i} \chi_s \right).$$

• Extended Higgs sector \rightarrow 7 physical Higgs bosons

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = U^H \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_s \end{pmatrix}, \ \begin{pmatrix} a_1 \\ a_2 \\ G \end{pmatrix} = U^A \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_s \end{pmatrix}, \ \begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = U^C \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$

In the NMSSM the Higgs signal at 126 GeV can be the lightest (h_1) or the second lightest (h_2) CP-even Higgs

NMSSM Higgs with enhanced $\gamma\gamma$ rate

- Scan over the NMSSM parameter space
- $R_{\gamma\gamma}$ calculated with **FeynArts/FormCalc** (Effective coupling approximation of gluon fusion)

 In the NMSSM for both h₁ and h₂ interpretations: Enhancement of di-photon rate possible Gray:

Mechanism to enhance the $\gamma\gamma$ rate in the NMSSM

- Reduced h1bb coupling in the NMSSM $\propto U_{11}^H$
- $R_{\gamma\gamma}$ enhanced by a strong suppression of $h \rightarrow bb$ via doublet singlet mixing
- Requires large sizable singlet component
 → Genuine feature of the NMSSM

U. Ellwanger,[1012.1201], [1112.3548]

Conclusions

- Signal in the two photon channel higher than SM prediction
 MSSM
- Fitting the MSSM to experimental rates
- Both h and H at 126 GeV interpretations viable
- Fit prefers enhanced $h \rightarrow \gamma \gamma$, suppressed $h \rightarrow bb$ rate **NMSSM**
- Higgs at 126 GeV can be interpreted as h_1 or h_2
- Additional mechanism to enhance di-photon rate

 \rightarrow Suppression of h \rightarrow bb via doublet-singlet mixing

Thank you!

Back-up slides

Parameter ranges for MSSM fit

Random scan of 7 "pMSSM" parameters (~10 M points) (+ m_t varied in 2 σ interval)

	Min	Max
M_A	90	1000
aneta	1	60
M_{Q_3}	200	1500
A_t	$-3 M_{Q_3}$	$3 M_{Q_3}$
μ	200	3000
M_{L_3}	200	1500
M_2	200	500

$$\begin{split} M_{Q_{1,2}} &= M_{U_{1,2}} = M_{D_{1,2}} = 1 \, \text{TeV} \\ M_{D_3} &= M_{U_3} = M_{Q_3} \\ M_{L_{1,2}} &= M_{E_{1,2}} = 300 \, \text{GeV} \\ M_{E_3} &= M_{L_3} \\ A_b &= A_\tau = A_t \\ M_3 &= 1 \, \text{TeV} \\ \text{M}_1 \, \text{fixed by GUT relation} \end{split}$$

3

Values used for BPO and (g-2)

Observable	Experiment	SM prediction	Total unc. used
$BR(B \to X_s \gamma)_{E_0 > 1.6 GeV}$	$(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$	$(3.08 \pm 0.24) \times 10^{-4}$	0.7×10^{-4}
$BR(B_s \to \mu^+ \mu^-)$	$< 4.5 \times 10^{-9} (95\% \text{ CL})$	$3.5 \pm 0.4 \times 10^{-9}$	0.5×10^{-9}
$BR(B \to \tau^+ \nu_\tau)$	$(1.64 \pm 0.34) \times 10^{-4}$	$(1.01 \pm 0.29) \times 10^{-4}$	0.45×10^{-4}
δa_{μ}	$(30.2 \pm 8.8) \times 10^{-10}$	0	9×10^{-10}

Lisa Zeune | A 126 GeV Higgs boson with enhanced yy rate in Supersymmetry | Theory workshop 2012 | Page 17

Parameter ranges for NMSSM scan

Parameter	Minimum	Maximum	
$A_t = A_b = A_\tau$	-2400	2400	GeV
$\mu_{ ext{eff}}$	150	250	GeV
$M_{H^{\pm}}$	500	1000	GeV
aneta	2.6	6	
λ	0.5	0.7	
K	0.3	0.5	
A_{κ}	-100	-5	GeV

Fixed parameters:

 $M_{
m SUSY} = 1000~{
m GeV}$ $M_L = M_E = 250~{
m GeV}$ $M_2 = 400~{
m GeV}$ $M_1 \approx M_2/2$ $m_{\tilde{g}} = 1200~{
m GeV}$

Calculation of $R\gamma\gamma$ in the NMSSM

- Production cross section approximated by gluon fusion
- Approximation $\sigma(gg \rightarrow h)$ by $\Gamma(h \rightarrow gg)$
 - Couplings the same, difference in kinematics neglected
- Total width:

$$\Gamma_{\rm tot} = \frac{1}{m_h} \operatorname{Im} \left[\Sigma(m_h^2) \right] + \Gamma(h \to WW^*) + \Gamma(h \to \gamma\gamma) + \Gamma(h \to gg)$$

Summary of fits

	Only LHC data		LHC + BPO + $(g-2)_{\mu}$					
Case	min χ^2	dof	χ^2/dof	p	min $\chi^2_{\rm tot}$	dof	$\chi^2_{\rm tot}/{ m dof}$	p
SM	27.6	34	0.811	0.77	42.3	38	(1.11)	0.29
MSSM-h	23.2	28	0.828	0.72	28.3	32	0.886	0.65
MSSM-H	24.5	28	0.874	0.65	31.0	32	0.969	0.52
						dof	$= N_{\rm obs} -$	$N_{\rm para}$

SM fit worse if (g-2) included $(3\sigma \text{ deviation})$

- Fits in good shape for SM and MSSM (both interpretations)
- No model preferred over the others

MSSM light Higgs case

Favored region in the MA – tanβ plane:

With BPO and (g-2)

Without BPO and (g-2)

MSSM light Higgs case

Favored stop mixing, stop masses

MSSM heavy Higgs case

Favored region in the MA – tanβ plane:

Allowed range for MA unexpectedly large (for large μ) Higgs mass prediction stable?

MSSM heavy Higgs case

Favored stop mixing, stop masses

Example points

Parameter	$M_h \sim 126 \mathrm{GeV}$	$M_H \sim 126 \mathrm{GeV}$
$M_A \; (\text{GeV})$	277.0	107.3
aneta	17.49	15.88
M_{Q_3} (GeV)	567.46	738.79
$A_t \; ({\rm GeV})$	1344.	1733.
$\mu ~({ m GeV})$	2400.	1411.
M_{L_3} (GeV)	1239.	953.6
$M_2 ({\rm GeV})$	459.5	245.9
Calculated		
$M_h \; (\text{GeV})$	125.8	86.4
$M_H ~({ m GeV})$	235.7	125.4
$M_A \ ({\rm GeV})$	277.0	107.3
$M_{H^{\pm}}$ (GeV)	280.0	130.5