$\sqrt{\hat{s}}_{\min}$ resurrected (arXiv:1109.1018, JHEP02(2012)051)

Tania Robens

IKTP, TU Dresden

DEST Theory Workshop 2012 **DESY Hamburg** 27.9.2012

 $\sqrt{\hat{s}}_{min}$ resurrected

Collider signatures of BSM theories

- generic feature of any (reasonable) BSM theory:
 observable deviations from Standard Model predictions
- ⇒ changed event rates (= modified cross sections)
- ⇒ resonances of new particles (= new mass eigenstates)
 - to fully determine theory at low energy scale: also need spins and couplings
 - also important: "indirect" measurements through higher order contributions: can give important restrictions
 - so far: only collider exclusion limits exist
- ⇒ cf various 2012 conference summary talks...

$\sqrt{\hat{s}}_{\min}$: A short historical overview (1)

- $\sqrt{\hat{s}_{min}}$: suggested by Konar, Kong, Matchev (arXiv:0812.1042)
- motivation: have a totally inclusive variable, which does not care about intermediate decay steps/ topology/ ...
- need events of the type:

$$X_1 + X_2 \rightarrow \underbrace{Y_1 + Y_2 + Y_3 + \dots}_{\text{visible}} + \underbrace{Z_1 + Z_2 + Z_3 + \dots}_{\text{invisible}}$$

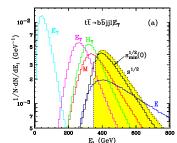
- requirement: have both visible and invisible decay products, as well as energy momentum conservation
- definition: (Minv is input !!)

$$\hat{s}_{\min}^{1/2}(M_{\text{inv}}) \equiv \sqrt{E^2 - P_z^2} + \sqrt{(\not\!E_T)^2 + M_{\text{inv}}^2}$$
 (1)

- (E, \overrightarrow{P}) : total visible fourvector, $\not \!\! E_T = |P_T|, M_{\text{inv}} = \sum_{\text{invisible}} m_i$
- "min": (1) is minimal \sqrt{s} of event compatible with visible/invisible four momenta

$\sqrt{\hat{s}}_{min}$: A short historical overview (2)

- original definition on calorimeter level !!!
- suppression of soft background: cut in pseudorapidity η
- empirical conjecture in original paper: correlation to hard scale



from Konar ea, different kinematic variables for $t\bar{t} \to b\bar{b}jjl \not\!\! E_T$

- tested by Kong ea on various SM and BSM processes
- reminder: similar conjecture used to exist for M_{eff}, disproved in Conley ea, arXiv:1103.1697

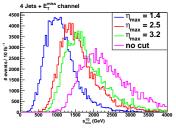
Data from Les Houches 09 mass determination project

- project started at the Les Houches 2009 BSM session
- generate generic BSM data samples, including all background, use parton showers and detector simulation
- use this data to check several (new/ old) mass determination methods/ proposals
- relative low luminosity: $\int \mathcal{L} \lesssim 10 \, \mathrm{fb}^{-10}, \, \sqrt{s}_{\mathsf{hadr}} = 14 \, \mathrm{TeV}$
- point generated: SPS1a (this was before its exclusion...)
- generated: all production channels, all decay channels
- ⇒ samples contain complete signature for this parameter point
 - results: **BSM Les Houches Report 2009** (arXiv:1005.1229)

$\sqrt{\hat{s}}_{\mathsf{min}}$ and soft background (1)

First test: apply calorimenter-based variable (J.R. Lessard, LH09 mass study)

cut in pseudorapidity: strong cut dependence



 $\eta_{\rm cut}$ dependence from Les Houches study (J.R. Lessard), using calorimeter level

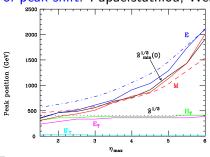
 $\hat{s}_{\min}^{1/2}(0)$ for different values of η_{cut}

• analytic proof of peak shift: Papaefstathiou, Webber, 09/10

quantitities

$\sqrt{\hat{s}}_{min}$ and soft background (2)

• analytic proof of peak shift: Papaefstathiou, Webber, 09/10



peak of $\sqrt{\hat{\mathbf{s}}}_{\mathrm{min}}$ distribution for $t\bar{t}$ decay, dependence on η cut, resummation approach

A.Papaefstathiou, B. Webber, arXiv:0903.2013

- solution: define $\sqrt{\hat{s}}_{min}$ on reconstruction level (Matchev ea, 11)
- however: many people esteem damage done, variable lost... is this true ??

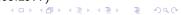
A more thorough analysis on the Les Houches 09 sample

In the following: apply $\sqrt{\hat{s}_{min}}$ definition on several quantities:

- $\sqrt{\hat{s}_{\min}^{part}}$: apply definition in parton level quantity (= "perfect reconstruction"), mainly for behaviour checks
- $\sqrt{\hat{s}_{\min}^{ana}}$: apply on analysis level objects after detector simulation (experimental object definitions through p_T, η , isolation cuts)
- $\sqrt{\hat{s}_{min}^{cal}}$: apply definition on calorimeter quantities (original suggestion)
- \bullet $\sqrt{\hat{s}_{\min}^{\mathrm{cal},\eta}}$: apply definition on calorimeter quantities, with $|\eta|<1.4$ Always:

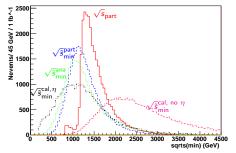
$$\overrightarrow{P}_T = -\overrightarrow{P}_T, \not\!\!E_T = |\overrightarrow{P}_T|$$

(for confusions from differing $\not\equiv_T$ definitions: cf A. Barr ea, "A Storm in a 'T' cup", arXiv:1105.2977)



$\sqrt{\hat{s}}_{\rm min}$ on the Les Houches 09 sample

- ullet apply different definitions of $\sqrt{\hat{s}}_{min}$ on Les_Houches sample
- fully inclusive \Rightarrow include all final states, $\sqrt{s}_{th} = 1146 \, \mathrm{GeV}$



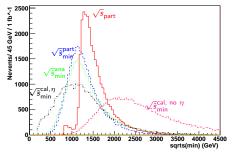
 $\tilde{q}\tilde{q},~\tilde{q}\tilde{g},$, and $\tilde{g}\tilde{g}$ initial states, true \sqrt{s} , parton level $\sqrt{\hat{s}}_{\rm min}$, analysis level $\sqrt{\hat{s}}_{\rm min},~\sqrt{s}_{\rm min}$ using calorimeters with (without) $|\eta|<1.4$

⇒ analysis level definition nicely reproduces parton level

• peaks using Gaussian fit: $(1152 \pm 4) \, \mathrm{GeV}$, $(1983 \pm 4) \, \mathrm{GeV}$

$\sqrt{\hat{s}}_{\rm min}$ on the Les Houches 09 sample: au corrected

• "au corrected": use parton level aus on analysis level "cheaty" (=theorists) way to assess effects of tau reconstruction



 $ilde{q} ilde{q},\, ilde{q} ilde{g},$, and $ilde{g} ilde{g}$ initial states, true \sqrt{s} , parton level $\sqrt{\hat{s}}_{\min}$, analysis level $\sqrt{\hat{s}}_{\min},\,\sqrt{s}_{\min}$ using calorimeters with (without) $|\eta|<1.4$

peaks using Gaussian fit: $(1152 \pm 4) \, \text{GeV}$, $(1163 \pm 4) \, \text{GeV}$

SM suppression using $\sqrt{\hat{s}}_{min}$

- got nice results for analysis level peak positions
- however, depends on $M_{\text{inv}} = \sum_{\text{invis}} m_i !!$ what if wrong guess ??
- ullet can at least check SM suppression power of $\sqrt{\hat{s}}_{min}$

	no cut	$M_{\text{inv}} =$				M _{vis, min}		M _{eff, min}	
		$2 m_{\widetilde{\chi}_1^0}$	0	400	10 ³	400	500	400	500
W+ jets	254.2	62.53	81.13	48.73	46.73	70.29	42.41	75.89	43.3
$t\overline{t}+$ jets	151.4	52.99	64.67	51.77	50.14	64.63	46.3	63.98	40.12
BSM	31.05	28.82	29.82	28.42	27.80	27.07	24.43	29.99	28.72

units are pb and GeV. $\sqrt{\hat{s}}_{min, cut} = M_{inv} + 500 \text{GeV}$.

$$\Rightarrow \sqrt{\hat{s}}_{min}, M_{vis}, M_{eff}$$
 suppress similarly well

sideremark: $\sqrt{\hat{s}}_{min}$ used a SM background suppression variable in ATLAS-CONF-2012-070 (light \tilde{t} search); different spectrum...

Instead of Summary: Work in progress¹ (1)

In collaboration w K. Rolbiecki, K. Sakurai

- can we get **generic insight on viability** of $\sqrt{\hat{s}}_{min}/$ other variables ?
- first "naive" example: completely invisible final states, eg $e \, e \, \to \, Z \, \to \, \nu \nu$ $\sqrt{\hat{s}_{\text{min}}} \, = \, 0, \, \hat{s}_{\text{th}} \, \sim \, m_Z \Rightarrow \text{complete failure}$
 - (of course no variable works for completely invisible final states...)
- ullet aside: also debateable: definition of "true" $M_{
 m inv}$, eg in $ilde{
 u}
 ightarrow ilde{\chi}_1^0$ decays

¹supported by Fellowship from SFB 676 "Particles, Strings, and the Early Universe"

4 □ → 4 ⑤ → 4 ⑤ → 4 ⑤ → 4 ⑤ → 4 ⑥

Work in progress (2): $\sqrt{\hat{s}}_{min}$ vs M_{eff}

In collaboration w K. Rolbiecki, K. Sakurai

next example: consider $A \rightarrow B_{inv} + c_{vis}, p_c^2 = 0$

$$ullet$$
 remember $\hat{\mathfrak{s}}_{\min}^{1/2} \equiv \sqrt{\mathit{E}^2 - \mathit{P}_z^2} + \sqrt{\mathit{E}_T^2 + \mathit{M}_{\mathrm{inv}}^2}$

- consider for comparison $M_{\rm eff} = \sum |p_T| + \not \!\! E_T$
- a) large hierarchy, ie $m_A\gg m_B:|p_{B,c}|\sim \frac{m_A}{2}:\sqrt{\hat{s}_{\min}}\sim M_{\rm eff}\sim m_A$
- b) degenerate scenario: $m_A \sim m_B : |p_{B,c}| \sim \frac{m_A^2 m_B^2}{2 m_A} \ll m_A$:

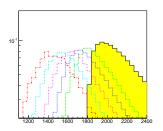
$$\sqrt{\hat{s}}_{min} \sim m_A$$
, $\mathcal{M}_{eff} \sim 2 |p_{B,c}| \ll m_A$
 $\Rightarrow M_{eff}$ fails for degenerate spectra \Leftarrow

(here: only rough order of magnitude estimate, prefactors a la $p_T = \sin \theta |p|$ are neglected)

Work in progress (3): effect of many invisibles

In collaboration w K. Rolbiecki, K. Sakurai

- both $\sqrt{\hat{s}}_{\min}$, $M_{\rm eff}$ depend on $\not\!\!E_T$
- increased number of invisible final state particles: large cancellations in $\not\!\!E_T = \sum \overrightarrow{p}_{\text{inv},T}$ possible
 - \Rightarrow effective decrease of peak position \Leftarrow
- example: $\sqrt{\hat{s}}_{\min}$, $\tilde{g}\tilde{g}$ production, with $\tilde{g} \to \tilde{\chi}_1^0 W W t t$, Ws decay to qq (no invisibles) or $I\nu$ (1 invisible)



 $\tilde{g}\tilde{g}$ production and successive decays through W with in total 0,1,2,3,4 invisibles (right to left)

$\sqrt{\hat{s}}_{\min}$: Summary and Outlook

ullet if correlation between threshold and maximum of $\sqrt{\hat{s}}_{
m min}$

$$\sqrt{\hat{s}}_{\mathsf{min}}^{\mathsf{peak}} \sim \sqrt{\hat{s}}_{\mathsf{thr}}^{\mathsf{part}}$$

holds: powerful handle on new physics scale !!!

⇒ specified kinematic cases where this is not fulfilled

 $\sqrt{\hat{s}}_{min}$ resurrected

- ⇒ further investigation needed
 - next step: check for many different spectra, scan underway...
 - !! Variable not dead yet !! Thanks for listening

Appendix

Why masses ??

- first obvious choice: cross section measurements
- however, depend on knowledge of actual cm energies
- usually "smeared" (eg bremsstrahlung for ILC) or unknown (LHC), ie only obtainable in form of probability distributions (in form of PDFs)
- furthermore, many experimental issues (calibration of detector, ...)
 ⇒ getting better and better though...
- variables constructed for mass measurements: depend less on overall (experimental and theoretical) normalization uncertainties
- ⇒ construction of Lorentz-invariant mass variables: even cm independent (especially useful for processes at LHC)
- ⇒ ideal candidates for BSM discoveries and measurements
 - spins, couplings: more complicated; next step on the road...

	568.4												
	202.9												
$\tilde{\chi}_1^-$	181.7	$\widetilde{\chi}_2^-$	380.0	$\widetilde{\chi}_1^0$	96.7	$\widetilde{\chi}_2^0$	181.1	$ \widetilde{\chi}_3^0 $	363.8	$\widetilde{\chi}_4^0$	381.7	ĝ	607

Relevant masses for SPS1a in GeV. $u = (u, c), d = (d, s), l = (e, \mu)$.

$$egin{array}{c|c|c|c} X_1 X_2 & 2 \rightarrow 2 & 2 \rightarrow 3 \\ \widetilde{q}\widetilde{q}(j) & 6.56 & 7.83 \\ \widetilde{q}\widetilde{g}(j) & 19.52 & 21.75 \\ \widetilde{g}\widetilde{g}(j) & 4.53 & 5.47 \\ \widetilde{\chi}\widetilde{\chi}(j) & 1.97 & 4.89 \\ \hline \end{array}$$

Production cross sections in pb for $p p \rightarrow X_1 X_2$, for a cm energy of 14 TeV.

CTEQ6L1 PDFs were used. 2 ightarrow 3 sample includes explicitly generated hard jet,

where hard is defined by $p_{T,jet} > 40 \,\mathrm{GeV}$.

Details on data generation (R. Brunelière, T. Lari, S. Sekmen)

- **SUSY spectrum**: generated using **SoftSusy** (B. Allanach, hep-ph/0104145)
- 2 \rightarrow 2 and 2 \rightarrow 3 matrix element generation: Madgraph (T. Stelzer, W. Long, hep-ph/9401258; F. Maltoni, T. Stelzer, hep-ph/0208156)
- generation of decay chains: Bridge
 (P. Meade, M. Reece, hep-ph/0703031)
- parton shower generation: Pythia (in Madgraph)
 (T.Sjostrand, S.Mrenna, P. Skands, hep-ph/0603175)
- matching of samples with different jet multiplicities: MLM matching algorithm in Madgraph (J.Alwall ea, hep-ph/0706.2569; J.Alwall, S. de Visscher, F. Maltoni, hep-ph/0810.5350)
- detector simulation: Delphes
 (S. Ovyn, X. Rouby, V. Lemaitre, hep-ph/0903.2225)
- data analysis: ROOT (http://root.cern.ch)

Delphes pre cuts and analysis object definitions

(L.Basso, T. Lari, J.-R. Lessard)

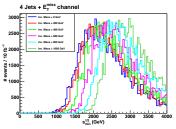
object	Delphes predefinition	additional requirement			
electron/ position	$ \eta < 2.5$ in tracker, $p_T > 10\mathrm{GeV}$	isolated			
muon	$ \eta < 2.4$ in tracker, $p_T > 10{ m GeV}$	isolated			
lepton isolation	no track with $p_T > 2 \mathrm{GeV}$	no track with $ ho_T > 6{ m GeV}$			
criteria	in a cone with $dR = 0.5$	in a cone with $dR = 0.5$			
	around the considered lepton	around the considered lepton			
n leptons	_	exactly <i>n</i> isolated leptons at detector level			
taujet	$p_T > 10\mathrm{GeV}$				
jet	$p_T > 20 \mathrm{GeV}$	$p_{T, \text{jet}} > 50 \text{GeV}, \eta _{\text{jet}} < 3$			
	CDF jet cluster algorithm,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	R = 0.7				
Missing transverse		$E_{\tau}^{ m miss} > 100{ m GeV}$			
energy					

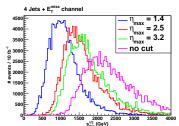
$\sqrt{\hat{s}_{\min}}$ (J.-R. Lessard)

- $\sqrt{\hat{s}}_{min}$: determine scale of new physics by threshold scan
- however: requires mass of invisible final state particle as input

• definition:
$$\hat{\mathsf{s}}_{\min}^{1/2}(M_{\mathrm{inv}}) \equiv \sqrt{E^2 - P_z^2} + \sqrt{(E_{\mathrm{T}}^{\mathrm{miss}})^2 + M_{\mathrm{inv}}^2}$$

high sensitivity to ISR; solution: cut in jet pseudorapidity





 $\hat{s}_{\min}^{1/2}$, different values of M_{inv} , no η cut $\hat{s}_{\min}^{1/2}(0)$ for different values of η_{cut}

large dependence on η cut !!

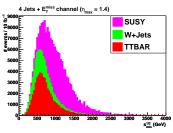
also: large effects when resummation is included;

(Papaefstathiou ea, arXiv:1002.4375, 1004.4762; Konar ea, 1006.0653)

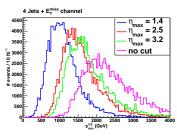
Tania Robens

DESY Theory Workshop 2012

$\sqrt{\hat{s}}_{min}$: including SM background (J.-R. Lessard)



 $\sqrt{\hat{s}}_{\mathsf{min}}(0)$, 4 jet channel, $\mathsf{SUSY} + \mathsf{SM}$ background

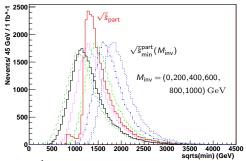


 $\hat{s}_{\min}^{1/2}(0)$ for different values of η_{cut}

√ peaked at value different from SM background

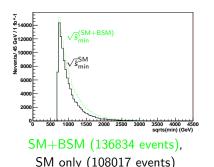
⇒ useful for BSM discovery

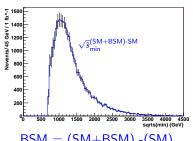
$\sqrt{\hat{s}}_{\min}$: dependence on M_{inv}



- peaks shuffle $\sim \frac{1}{2}\Delta M_{\rm inv}$ (max bin analysis)
- same functional dependence for p_T : can use this for estimate of fake P_T from soft physics
- typical values: (Gaussian fits) $\sqrt{\hat{s}}_{\min}^{\text{peak}}(\Delta P_T^{\text{fake}}=10\,\mathrm{GeV})$: (1082 \pm 4) $\mathrm{GeV},\sqrt{\hat{s}}_{\min}^{\text{peak}}(\Delta P_T^{\text{fake}}=100\,\mathrm{GeV})$: (1093 \pm 4) GeV

SM Background





 $\mathsf{BSM} = (\mathsf{SM} + \mathsf{BSM}) - (\mathsf{SM})$

Analysis level $\sqrt{\hat{s}}_{min}$ after a cut $\sqrt{\hat{s}}_{min} > 700\,\mathrm{GeV}$. SM background: $(W+2j,\,W+3j,\,W+4j,\,t\bar{t},\,t\bar{t}+1j,\,t\bar{t}+2j)$.

- peak disappears after addition of (some) background
- after background subtraction (data driven or other): peak

Derivation of $\sqrt{\hat{s}_{min}}$: Minimization

start with

$$\hat{\mathbf{s}}_{(\overrightarrow{P}_{\tau} = -\overrightarrow{P}_{\tau})} = \left(E + \sum_{j} E_{j}\right)^{2} - \left(P_{Z} + \sum_{j} p_{jz}\right)^{2} \tag{2}$$

• Introduce additional constraint $\sum_i p_{jT} = \not P_T$ using Lagrange multipliers, ie minimize

$$\mathcal{L} = \hat{s} - \lambda \left(\sum_{j} p_{jT} - p_{T} \right),$$

solutions:

$$p_{iT} = rac{p_T}{M_{inv}} m_i, \, p_{iz} = rac{P_z \, m_i}{\sqrt{E^2 - P_z^2}} \, \sqrt{1 + rac{p_T^2}{M_{inv}^2}}.$$

put back in Eq. (2): obtain

$$\hat{s}_{\min}^{1/2}(M_{\mathrm{inv}}) \equiv \sqrt{E^2 - P_z^2} + \sqrt{(\not\!\!E_T)^2 + M_{\mathrm{inv}}^2}$$

!!! purely kinematic minimization !!! (eg for $m_i = 0$, $p_i = 0$)

Peak position of $\sqrt{\hat{s}}_{min}$

- is there a rigorous analytic proof of $\sqrt{\hat{s}_{\min}^{peak}} \sim \sqrt{\hat{s}_{thr}^{part}}$??
- quite complicated: need "effective" description in terms of $P^{\mu}_{\rm vis},\,P^{\mu}_{\rm invis}$
- one complication: onshell condition $P^2 = m^2 \rightarrow \text{distribution } f(m^2)$
- first steps: 2 → 2 process, massless final state, unit matrix element, unit PDF
- then:

$$\frac{d\sigma}{d\sqrt{\hat{s}}_{\min}} \sim \int_{\hat{s}_{\min}/S}^{1} dy \, \frac{\sqrt{\hat{s}}_{\min}}{S^2 y^{3/2} \sqrt{y - \frac{\hat{s}_{\min}}{S}}} f(y)$$

with
$$f(y) = 0$$
 for $y < \max\left\{\frac{s_{th}}{S}; \frac{\hat{s}_{min}}{S}\right\}$

- leads to constant rise (fall) for $\hat{s}_{min} < s_{th} (\hat{s}_{min} > s_{th})$
- complete proof: long way to go... (really worth it ??)

Easy example in more detail (1): analytic approximation

process:
$$A \rightarrow B_{\text{inv}} + c_{\text{vis}}, p_c^2 = 0$$

$$|p_{B,c}| = \frac{m_A^2 - m_B^2}{2 m_A}, m_A \gg m_B : |p_{B,c}| \sim \frac{m_A}{2}$$

$$p_T = \sin\theta |p|, \langle p_T \rangle = \frac{\pi}{4} |p|$$

• hierarchy: $\langle \sqrt{\hat{s}_{min}} \rangle \approx \langle M_{eff} \rangle \approx 0.8 \, m_A$

 $\sqrt{\hat{s}}_{min}$ resurrected

- degeneracy: $\sqrt{\hat{s}_{\min}} \approx m_B$, $\langle M_{\text{eff}} \rangle \approx \frac{\pi}{4} \frac{m_A^2 m_B^2}{2 m_A} \ll m_A$
 - !! Average values, not peak positions !!

Easy example in more detail (2): plots

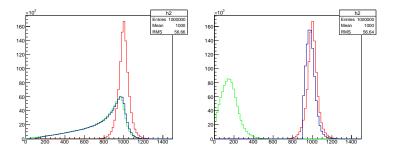


Figure: True m_A (red), $M_{\rm eff}$ (green), and $\sqrt{\hat{s}}_{\rm min}$ (blue) for $m_B=0.1\,m_{A0}$ (left) and $m_B=0.9\,m_{A0}$ (right) where the visible decay product is massless. As expected, the peak of $\sqrt{\hat{s}}_{\rm min}$ is around the true value m_A , while $M_{\rm eff}$ fails for degenerate scenarios.