Multi-Component Dark Matter Systems and Their Observation Prospects

Michael Duerr

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

DESY THEORY WORKSHOP 2012

Based on arXiv:1207.3318 [hep-ph]

(accepted for publication in PRD)

with: M. Aoki (MPIK and Kanazawa University),

- J. Kubo (Kanazawa University), and
- H. Takano (Kanazawa University).

INTERNATIONAL MAX PLANEX RESEARCH SCHOOL

Hints for DM

Consistent hints on all scales.

Introduction

Content of the Universe

Michael Duerr (MPIK)

Multi-component DM

PLANCK-INSTITUT

Multi-Component DM Systems

Multi-component DM systems

- How can a multi-DM system arise?
 - *Z_N*(*N* ≥ 4)
 - Product of two or more *Z*₂:

If $(Z_2)^l$ is unbroken, we have at least K = l stable DM particles. In a kinematically fortunate situation, $2^l - 1$ stable DM particles may exist.

• . . .

• Non-standard annihilations

Multi-Component DM Systems

Coupled Boltzmann equations

standard annihilation

$$\frac{dY_i}{dx} = -0.264 g_*^{1/2} \left[\frac{\mu M_{\rm PL}}{x^2} \right] \left\{ \left(\langle \sigma(ii; X_i X_i') v \rangle \left(Y_i Y_i - \bar{Y}_i \bar{Y}_i \right) \right) \right\}$$

$$+ \sum_{i>j} \langle \sigma(ii;jj) \mathbf{v} \rangle \Big(Y_i Y_i - \frac{Y_j Y_j}{\bar{Y}_j \bar{Y}_j} \bar{Y}_i \bar{Y}_i \Big) - \sum_{j>i} \langle \sigma(jj;ii) \mathbf{v} \rangle \Big(Y_j Y_j - \frac{Y_i Y_i}{\bar{Y}_i \bar{Y}_i} \bar{Y}_j \bar{Y}_j \Big)$$

$$+\sum_{j,k} \langle \sigma(ij; kX_{ijk}) \mathbf{v} \rangle \Big(\mathbf{Y}_i \mathbf{Y}_j - \frac{\mathbf{Y}_k}{\mathbf{Y}_k} \mathbf{\bar{Y}}_i \mathbf{\bar{Y}}_j \Big) - \sum_{j,k} \langle \sigma(jk; iX_{jki}) \mathbf{v} \rangle \Big(\mathbf{Y}_j \mathbf{Y}_k - \frac{\mathbf{Y}_i}{\mathbf{Y}_i} \mathbf{\bar{Y}}_j \mathbf{\bar{Y}}_k \Big) \Big\}$$

DM semi-annihilation

$$Y_i = n_i/s$$
 $\mu = (\sum_i m_i^{-1})^{-1}$

see also F. D'Eramo, J. Thaler, JHEP 06 (2010) 109, G. Belanger, K. Kannike, A. Pukhov, M. Raidal, JCAP 04 (2012) 010.

DM conversion

A fictive three-component DM system

stand. annihilation	$\langle \sigma(ii; X_i X_i) v \rangle = \sigma_{0,i}$	
conversion	$ \begin{array}{l} \langle \sigma(11;22)v\rangle = \sigma_{0,12} \\ \langle \sigma(11;33)v\rangle = \sigma_{0,13} \\ \langle \sigma(22;33)v\rangle = \sigma_{0,23} \end{array} $	$ angle imes 10^{-9}{ m GeV}^{-2}$
semi-annihilation	$ \begin{aligned} &\langle \sigma(12; 3X_{123}) v \rangle = \sigma_{0,123} \\ &\langle \sigma(23; 1X_{231}) v \rangle = \sigma_{0,231} \\ &\langle \sigma(31; 2X_{312}) v \rangle = \sigma_{0,312} \end{aligned} $	

 $m_1 > m_2 > m_3$ and $m_2 + m_3 > m_1$.

Temperature evolution

• standard: $\sigma_{0,1} = 0.1$, $\sigma_{0,2} = 2$, $\sigma_{0,3} = 6$

• conversion: $\sigma_{0,12} = \sigma_{0,13} = \sigma_{0,23} = 5.2$

 $m_1 = 200 \text{ GeV}, m_2 = 160 \text{ GeV}, m_3 = 140 \text{ GeV}; x = \mu/T.$

Temperature evolution

• standard: $\sigma_{0,1} = 0.1$, $\sigma_{0,2} = 2$, $\sigma_{0,3} = 6$

• conversion: $\sigma_{0,123} = \sigma_{0,312} = \sigma_{0,231} = 5.1$

 $m_1 = 200 \text{ GeV}, \ m_2 = 160 \text{ GeV}, \ m_3 = 140 \text{ GeV}; \ x = \mu/T.$

The Ma model

Extend SM to
$$SU(2)_L \times U(1)_Y \times Z_2$$
,
introducing $N_i \sim (1,0;-)$ and
 $(\eta^+,\eta^0) \sim (2,1/2;-)$.

$$Z_2$$
 is exact $\rightarrow \langle \eta \rangle = 0$.

Higgs potential

$$\begin{split} V &= m_1^2 H^{\dagger} H + m_2^2 \eta^{\dagger} \eta + \frac{1}{2} \lambda_1 (H^{\dagger} H)^2 + \frac{1}{2} \lambda_2 (\eta^{\dagger} \eta)^2 + \lambda_3 (H^{\dagger} H) (\eta^{\dagger} \eta) + \\ \lambda_4 (H^{\dagger} \eta) (\eta^{\dagger} H) + \frac{1}{2} \lambda_5 [(H^{\dagger} \eta)^2 + \text{H.c.}] \end{split}$$

Neutrino mass

$$(\mathcal{M}_{\nu})_{ij} = \sum_{k} rac{h_{ik}h_{jk}M_{k}}{16\pi^{2}} \left[rac{m_{R}^{2}}{m_{R}^{2} - M_{k}^{2}} \ln rac{m_{R}^{2}}{M_{k}^{2}} - rac{m_{I}^{2}}{m_{I}^{2} - M_{k}^{2}} \ln rac{m_{I}^{2}}{M_{k}^{2}}
ight]$$

E. Ma, Phys. Rev. D73 (2006) 077301, arXiv:hep-ph/0601225

Michael Duerr (MPIK)

x-PLANCK-INSTITUT

The Ma model – DM

N_R DM studied by

- Krauss, Nasri, Trodden, Phys. Rev. D67 (2003) 085002
- Kubo, Ma, Suematsu, Phys. Lett. B642 (2006) 18 ...

η DM studied by

- Barbieri, Hall, Rychkov, Phys. Rev. D74 (2006) 015007
- Lopez Honorez, Nezri, Oliver, Tytgat, JCAP 02 (2007) 028
- Dolle, Su, Phys. Rev. D80 (2009) 055012 ...

Promotion of Z_2 to $Z_2 \times Z'_2$

 \rightarrow Promotion to a three-component DM system.

Extension of the Ma model

New particles

Add Majorana fermion χ and scalar ϕ with interaction $Y_k^{\chi} \chi N_k \phi$.

DM candidates

field	$SU(2)_L$	$U(1)_Y$	<i>Z</i> ₂	Z'_2
N ^c _i	1	0	—	+
$\eta = (\eta^+, \eta^0)$	2	1/2	—	+
χ	1	0	+	-
ϕ	1	0	_	-

Our DM particles

$$\eta^0_R$$
, χ , ϕ

Conversion

Semi-annihilation

Inert Doublet Model

L. Lopez Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 02 (2007) 028

Only low and high mass regimes are allowed.

Michael Duerr (MPIK)

Multi-component DM

A Three-Component DM Model

Including all constraints

IDM (only η_R^0 is DM):

E. Dolle, S. Su, Phys. Rev. D80 (2009) 055012

60 GeV
$$\leq m_{\eta^0_R} \leq$$
 80 GeV or $m_{\eta^0_R} >$ 500 GeV

$$\delta_1=m_{\eta^\pm}-m_{\eta^0_R}=10~{
m GeV}$$

 $\delta_2=m_{\eta^0_I}-m_{\eta^0_R}=10~{
m GeV}$

With χ and ϕ

Direct detection

green: η^0_R and violet: ϕ

A Three-Component DM Model

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Indirect search at neutrino telescopes

DM can be captured and annihilated in the Sun, producing neutrinos that can escape from the Sun.

Monochromatic u's from the Sun

Time evolution of the numbers of DM in the Sun:

$$\begin{split} \dot{N}_{\eta} &= C_{\eta} - C_{A}(\eta\eta \leftrightarrow \mathsf{SM})N_{\eta}^{2} - C_{A}(\eta\eta \leftrightarrow \phi\phi)N_{\eta}^{2} - C_{A}(\eta\chi \leftrightarrow \phi\nu_{L})N_{\eta}N_{\chi} \\ &- C_{A}(\eta\phi \leftrightarrow \chi\nu_{L})N_{\eta}N_{\phi} + C_{A}(\phi\chi \leftrightarrow \eta\nu_{L})N_{\chi}N_{\phi} , \\ \text{analog for } \dot{N}_{\chi} \text{ and } \dot{N}_{\phi} \end{split}$$

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Time evolution of the annihilation rates

$$\Gamma(\mathrm{SM}) = C_A(\eta\eta\leftrightarrow\mathrm{SM})N_\eta^2/2 + C_A(\phi\phi\leftrightarrow\mathrm{SM})N_\phi^2/2$$

 $\Gamma(\nu) = C_A(\eta\phi \leftrightarrow \chi\nu)N_\eta N_\phi + C_A(\eta\chi \leftrightarrow \phi\nu)N_\eta N_\chi + C_A(\chi\phi \leftrightarrow \eta\nu)N_\chi N_\phi$

Input parameters: $m_{\eta_R^0} = 200 \text{ GeV}$, $m_{\chi} = 190 \text{ GeV}$, $m_{\phi} = 180 \text{ GeV}$, $m_h = 125 \text{ GeV}$, $M_k = 1000 \text{ GeV} \rightarrow E_{\nu} \approx 200 \text{ GeV}$.

Limits from neutrino telescopes

 Γ (monochromatic ν) $\approx 0.001 \times 10^{20}$ sec $\rightarrow 0.05$ events per year at Ice Cube

- Non-standard annihilations of DM can play an important role for the relic abundance of DM and for indirect observation of DM.
- The detection of monochromatic neutrinos from the Sun may give a hint for multi-component DM in the Universe.

- Non-standard annihilations of DM can play an important role for the relic abundance of DM and for indirect observation of DM.
- The detection of monochromatic neutrinos from the Sun may give a hint for multi-component DM in the Universe.

Thanks for your attention!

Backup slides

Dependence on the non-standard annihilations

