Top-mass effects in differential Higgs production through gluon fusion at order a_s^4

BERGISCHE UNIVERSITÄT WUPPERTAL **Tobias Neumann**

Bergische Universität Wuppertal

September 26, 2012

Overview

Introduction

Higgs production through gluon fusion in effective theory LO considerations for Higgs+Jet production

Top-mass effects at next-to-leading order

Inclusive cross section σ Differential cross section $d\sigma/dp_T$

Lessons from inclusive Higgs production

- 1. NLO increases LO by $\simeq 50-100\%$, NNLO again by $\simeq 20\%$
- 2. Asymptotic expansion in Λ/m_t , $\Lambda \in \{m_H, \sqrt{\hat{s}}, p_T, ...\}$ with leading order: $m_t = \infty$, $\mathcal{O}(1/m_t^0)$ reduces loops by one
- 3. Error for inclusive total Higgs production cross section due to $m_t = \infty$ at NNLO: $\simeq 1\%$

Error for non-inclusive/differential Higgs production uncertain before:

Top-mass effects at next-to-leading order 0000

LO considerations for Higgs+Jet production through gluon fusion

Top-mass effects at next-to-leading order 0000

LO considerations for Higgs+Jet production through gluon fusion

Top-mass effects at next-to-leading order 0000

LO considerations for Higgs+Jet production through gluon fusion

perturbative effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^0) / \sigma_{LO}^{m_t exact}$ LO mass effects = $\sigma \mathcal{O}(a_s^3 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$ NLO mass effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$

Inclusive cross section σ

 K_0 : numerator and denominator $1/m_t^0 = m_t \rightarrow \infty$ K_2 : with additional $1/m_t^2$ contributions each

perturbative effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^0) / \sigma_{LO}^{m_t exact}$ LO mass effects = $\sigma \mathcal{O}(a_s^3 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$ NLO mass effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$

Differential cross section $d\sigma/dp_T$

 K_0 : numerator and denominator $1/m_t^0 = m_t \rightarrow \infty$ K_2 : with additional $1/m_t^2$ contributions each

Summary & Conclusion

- K-factor for gluon fusion large \rightarrow NLO, NNLO calculations necessary
- LO: 1 loop; NⁿLO: no efficient multi-loop evaluation
- Effective theory $m_t
 ightarrow \infty$ reduces loops by one
 - $\circ~$ Total inclusive cross section: error $\simeq 1\%$
 - As yet: Unknown behaviour for non-inclusive processes
- Differential cross section (H+jet):
 - $1/m_t^2$ -contributions for *gg*-channel just a few percent
 - $\circ~$ *K*-factor provides excellent approximation up to $p_T \simeq 150 \, \text{GeV}$

Conclusion: Errors in gg + gq for $m_t \rightarrow \infty$ are small compared to uncertainties in PDF, m_b , α_s , α , ...

Thank you for your attention!

Top-mass effects in differential Higgs production through gluon fusion at $O(a_s^4)$ Harlander, Neumann, Ozeren, Wiesemann: JHEP 08 (2012) 139; arXiv: 1206.0157

perturbative effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^0) / \sigma_{LO}^{m_t exact}$ LO mass effects = $\sigma \mathcal{O}(a_s^3 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$ NLO mass effects = $\sigma \mathcal{O}(a_s^4 \cdot 1/m_t^2) / \sigma_{LO}^{m_t exact}$

 K_0 : numerator and denominator $1/m_t^0 = m_t \rightarrow \infty$ K_2 : with additional $1/m_t^2$ contributions each

$$\mathcal{L}_{\text{eff}} = \frac{C_1}{m_t} H \cdot F^a_{\mu\nu} F^{a\,\mu\nu} + \frac{C_2}{m_t^3} H \cdot D_a F^a_{\mu\nu} D^a F^{a\,\mu\nu} + \frac{C_3}{m_t^3} H \cdot F^a_\nu F^{b\,\nu}_\sigma F^{c\,\sigma}_\mu f^{abc} + \frac{C_5}{m_t^3} H \cdot F^a_{\alpha\nu} D^\nu D^\beta F^{a\,\alpha}_\beta$$

