Relaxed Dark Matter

Riccardo Catena, University of Göttingen

27. September 2012

Based on: RC and M.Pietroni 2004, RC and M.Pietroni 2012

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM

Thermal WIMPs WIMPs & cMSSM

Relaxed DM

Definition Cosmology Particle Physics

Outline

Thermal DM

Thermal WIMPs WIMPs & cMSSM

Relaxed DM

Definition Cosmology Particle Physics

Conclusions

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM

Thermal WIMPs WIMPs & cMSSM

Relaxed DM

Definition Cosmology Particle Physics

Thermal DM

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM

WIMPs & cMSSM

Relaxed DM

Definition Cosmology Particle Physics

► In the WIMP paradigm the dark matter relic abundance is found by solving the Boltzmann equation

$$\dot{n} + 3Hn = \langle \sigma v \rangle \left(n_{\rm eq}^2 - n^2 \right)$$

▶ When $\langle \sigma v \rangle n \sim H$ dark matter decouples and its density is diluted only by the Hubble expansion: thermal production.

 Order of magnitude estimations lead to approximately the correct relic abundance: "the WIMP miracle".

WIMPs & cMSSM

Constrained MSSM global fit:

Strege et al. 2011

- The WIMP paradigm is perfectly valid, but it might require a more sophisticated realization.
- It worths exploring alternative scenarios!

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM
Thermal WIMPs
WIMPs & cMSSM

Relaxed DM
Definition
Cosmology
Particle Physics

▶ In this framework the dark matter relic abundance is determined by the baryon asymmetry.

▶ It provides a solution to the DM-baryon cosmic coincidence:¹

$$\Omega_1 \sim rac{m_1}{m_2}\Omega_2$$

► A solution to this coincidence constitutes a promising guiding principle to formulate an alternative to the WIMP paradigm.

One refers to DM, two refers to baryons.

Relaxed Dark Matter

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM

WIMPs & cMSSM

Relaxed DM

Definition Cosmology Particle Physics

Assumptions

▶ A long range scalar field differently coupled to ρ_1 and ρ_2 :

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{1}{M^2} \left(\alpha_1 \rho_1 + \alpha_2 \rho_2 \right)$$

▶ An attractor solution for the scalar field equation:

$$\alpha_1 \rho_1 + \alpha_2 \rho_2 = 0$$

Consequence

Dark matter is produced by the relaxation of φ :

$$\Omega_1 = -\frac{\alpha_2}{\alpha_1} \times \Omega_2$$

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM

Thermal WIMPs WIMPs & cMSSM

Relaxed DM

Definition

Cosmology Particle Physic

Relaxed DM

Definition Cosmology Particle Physics

onclusions

 $\hbox{$\blacktriangleright$ Relaxed dark matter is:} \\ \hbox{any DM candidate with Ω_1 produced by the relaxation of φ.}$

▶ This requires a Lagrangian of the form:

$$\begin{split} \mathcal{L}_{\varphi} &= \frac{\sqrt{-g}}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi + \sum_{i=1,2} \mathcal{L}_{i} [g_{\mu\nu} A_{i}^{2}(\varphi), \psi_{i}] \\ \alpha_{i} &= \frac{\partial \log A_{i}}{\partial \varphi} \end{split}$$

• We impose a Z_2 symmetry under which φ is odd. This implies:

1
$$\alpha_i(\varphi) = \varphi \times g_i(\varphi^2)$$

2 The properties of the attractor can be discussed in the context of the Z_2 symmetry breaking.

Cosmology Particle Physic

Conclusions

► The FRW equations take the form

$$H^2 = \frac{1}{3M_p^2} \sum_{i} \rho_i + \frac{1}{6} \frac{M^2}{M_p^2} \dot{\varphi}^2$$

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{1}{M^2} \sum_{i=1,2} \alpha_i \rho_i$$

$$\dot{\rho}_i + 3H\rho_i = \alpha_i \rho_i \dot{\varphi}$$

▶ The DM mass is φ -dependent \longrightarrow it is density-dependent!

$$m_{\chi}(\varphi) = \frac{A_1(\varphi)}{A_2(\varphi)} \times m_1$$

Numerical examples

Relaxed Dark Matter

Riccardo Catena, University of Göttingen

Thermal DM
Thermal WIMPs

elaxed DM

Cosmology Particle Physic

► Linear perturbation equations

$$\ddot{\delta}_i = -2H(\dot{\delta}_i + \alpha_i \dot{\varphi}) + \frac{3}{2}H^2 \sum_{j=1,2} \Omega_j \delta_j \gamma_{ij}$$

 $ightharpoonup \gamma_{ij}$ is the dark matter/baryon linear coupling function

$$\gamma_{ij} = 1 + 2\frac{M_p^2}{M^2}\alpha_i\alpha_j \left(1 + \frac{a^2m_{\varphi}^2}{k^2}\right)^{-1}$$

► The mass of the scalar field is density-dependent

$$m_{\varphi}^{2} = \frac{1}{M^{2}} \sum_{i=1,2} \rho_{i} \left(\frac{\partial \alpha_{i}}{\partial \varphi} + \alpha_{i}^{2} \right)$$

▶ On the attractor, linear perturbations evolve as follows

$$\delta_1 = \delta_1^* \left(\frac{\mathsf{a}}{\mathsf{a}^*}\right)^\mathsf{m}$$

$$\delta_2 = b \times \delta_1$$

with b=1 and m=1.

Linear perturbations growths like in the ΛCDM!

Cosmology Particle Physic

Conclusions

► Equation for r_1 and r_2 : radii of the spherical dark matter and baryon overdensities

$$\frac{\ddot{r_i}}{r_i} = \alpha_i \dot{\varphi} \left(H - \frac{\dot{r_i}}{r_i} \right) - \frac{1}{2} H^2 \sum_j \Omega_j \left(1 + \delta_j \Gamma_{ij} \right)$$

► The coupling function $Γ_{ij}$ is given by (for $k^2 \gg a^2 m_\varphi^2$)

$$\Gamma_{ij} = \left\{ egin{array}{ll} 1 + 2 rac{M_p^2}{M^2} lpha_i lpha_j & ext{if} & r_i < r_j \ 1 & ext{otherwise.} \end{array}
ight.$$

• On the attractor $\Gamma_{ij} o 1$ and $\dot{\varphi} = 0$: ΛCDM evolution.

Definition

Cosmology Particle Physic

Conclusions

▶ If $\delta_1^* \neq \delta_2^*$ there are departures from the Λ CDM prediction.

Results are similar to what found for dark energy models.
Pace et al. 2010

Particle Physics

- ▶ The DM relic abundance is independent from $\langle \sigma v \rangle$: the couplings determining $\langle \sigma v \rangle$ are not constrained by CMB.
- ▶ The dark matter mass is environment-dependent. Direct and indirect DM detection experiments measure different m_{ν} . Example: DM-induced γ -ray flux

$$\Phi(E,\theta) = \frac{\langle \sigma v \rangle_0}{8\pi} \sum_f \frac{dN_f}{dE} B_f \int_{\rm l.o.s.} dl(\theta) \, \rho_\chi^2(I) \times \frac{1}{m_\chi^2(I)} \label{eq:phi}$$

• Present DM annihilations (i.e. $\langle \sigma v \rangle_0$) are unrelated to Ω_1 .

- ► The WIMP paradigm is perfectly valid, but it could require realizations more sophisticated than the cMSSM.
- ▶ Relaxed Dark Matter is a class of theories where Ω_1/Ω_2 is determined by the relaxation of a long range scalar field.
- Its main features are:
- 1 The dark matter relic abundance is unrelated to $\langle \sigma v \rangle$.
- 2 m_χ is environment-dependent. This has a strong impact on the indirect/direct detection techniques.
- 3 Linear perturbations evolve like in the Λ CDM.
- 4 Non linear clustering can be affected if $\delta_1^* \neq \delta_2^*$.