Flavor Violating Higgs Decays

Joachim Kopp

DESY Theory Workshop 2012 September 27, 2012

Based on work done in collaboration with Roni Harnik and Jure Zupan arXiv:1209.1397

Outline

- 2 Couplings to leptons
- 3 Couplings to quarks
- 4 Flavor-violating Higgs decays at the LHC

Flavor Mixing in the Higgs Sector

Motivation

Scenario 1: Several sources of EW symmetry breaking

... can lead to misalignment of mass matrices and light (125 GeV) Higgs Yukawa couplings

Example: Type III 2-Higgs Doublet model

Scenario 2: Extra Higgs couplings

Assume existence of heavy new particles, which induce effective operators of the form

$$\Delta \mathcal{L}_{Y} = -\frac{\lambda'_{ij}}{\Lambda^2} (\bar{f}^{i}_{L} f^{j}_{R}) H(H^{\dagger} H) + h.c. + \cdots,$$

 \rightarrow after EWSB, new (but misaligned) contributions to mass matrices and Yukawa couplings

Effective Yukawa Lagrangfian

Effective Yukawa Lagrangian

$$\mathcal{L}_{Y} = -m_{i}\bar{f}_{L}^{i}f_{R}^{i} - Y_{ij}^{a}(\bar{f}_{L}^{i}f_{R}^{j})h^{a} + h.c. + \cdots$$

Previously studied by many authors:

Bjorken Weinberg, PRL 38 (1977) 622 McWilliams Li, Nucl. Phys. B 179 (1981) 62 Shanker, Nucl. Phys. B 206 (1982) 253 Barr Zee, PRL 65 (1990) 21 Babu Nandi, hep-ph/9907213 Diaz-Cruz Toscano, hep-ph/9910233 Han Marfatia, hep-ph/0008141 Kanemura Ota Tsumura, hep-ph/0505191 Blanke Buras Duling Gori Weiler, arXiv:0809.1073 Casagrande Goertz Haisch Neubert Pfoh, arXiv:0807.4937 Giudice Lebedev, arXiv:0804.1753 Aguilar-Saavedra, arXiv:0904.2387 Albrecht Blanke Buras Duling Gemmler, arXiv:0903.2415 Buras Duling Gori, arXiv:0905.2318 Azatov Toharia Zhu, arXiv:0906.1990 Agashe Contino, arXiv:0906.1542 Davidson Greiner, arXiv:1001.0434 Goudelis Lebedev Park, arXiv:1111.1715 Blankenburg Ellis Isidori, arXiv:1202.5704 Arhrib Cheng Kong, arXiv:1208.4669 McKeen Pospelov Ritz, arXiv:1208.4597

Effective Yukawa Lagrangfian

Effective Yukawa Lagrangian

$$\mathcal{L}_{\mathbf{Y}} = -m_i \overline{f}_L^i f_R^i - Y_{ij}^a (\overline{f}_L^i f_R^j) h^a + h.c. + \cdots$$

New in this talk:

- Comprehensive list of up-to-date constraints (including subdominant ones)
- First LHC limits
- Strategy for future LHC searches

Couplings to Leptons

Low-energy constraints on LFV in the Higgs sector

 $Y^*_{\tau\mu}P_L + Y_{\mu\tau}P_R$

W

u

 \rightarrow 3 μ , μee , etc.

 γ, Z

 γ, Z

Constraints on $h \rightarrow \mu e$

Constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Substantial flavor violation ($BR(h \rightarrow \tau \mu, \tau e) \sim 0.01$) perfectly viable.

Couplings to Quarks

Constraints on Higgs couplings to light quarks

- Tight constraints from neutral meson oscillations
- Work in Effective Field Theory:

 $H_{\rm eff} = C_2^{db} (\bar{b}_R d_L)^2 + \tilde{C}_2^{db} (\bar{b}_L d_R)^2 + C_4^{db} (\bar{b}_L d_R) (\bar{b}_R d_L)$

• Wilson coefficients constrained in Bona et al., arXiv:0707.0636

Technique	Coupling	Constraint
D ⁰ oscillations	$ Y_{uc} ^2, Y_{cu} ^2 Y_{uc}Y_{cu} $	$< 5.0 imes 10^{-9} \ < 7.5 imes 10^{-10}$
B_d^0 oscillations	$ Y_{db} ^2$, $ Y_{bd} ^2$ $ Y_{db}Y_{bd} $	$< 2.3 imes 10^{-8} \ < 3.3 imes 10^{-9}$
B_s^0 oscillations	$ert egin{array}{c} ert ert egin{array}{c} ert ert ert ert ert ert ert ert$	$< 1.8 imes 10^{-6} \ < 2.5 imes 10^{-7}$
K ⁰ oscillations	$\begin{array}{c} \Re(Y_{ds}^2), \Re(Y_{sd}^2) \\ \Im(Y_{ds}^2), \Im(Y_{sd}^2) \\ \Re(Y_{ds}^*Y_{sd}) \\ \Im(Y_{ds}^*Y_{sd}) \\ \Im(Y_{ds}^*Y_{sd}) \end{array}$	$\begin{array}{c} [-5.9\ldots 5.6]\times 10^{-10}\\ [-2.9\ldots 1.6]\times 10^{-12}\\ [-5.6\ldots 5.6]\times 10^{-11}\\ [-1.4\ldots 2.8]\times 10^{-13} \end{array}$

Couplings involving top quarks

Loose constraints ($|Y_{qt}|, |Y_{tq}| < \text{few} \times 10^{-1}$) from

Single top production

CDF arXiv:0812.3400 DØ arXiv:1006.3575 ATLAS arXiv:1203.0529

• $t \rightarrow hq$

Craig et al. arXiv:1207.6794 based on CMS multilepton search arXiv:1204.5341

Not sensitive

• $t \rightarrow Zq$

CMS arXiv:1208.0957

Flavor-Violating Higgs Decays at the Large Hadron Collider

$h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Use VBF cuts (much lower BG than gg fusion)

$\pmb{h} \rightarrow \tau \mu$ and $\pmb{h} \rightarrow \tau \pmb{e}$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Use VBF cuts (much lower BG than gg fusion)

Technicalities:

- Consider only 2-lepton final states here
- Use MadGraph 5, v1.4.6, Pythia 64, PGS
- Use only 120-160 GeV bin
- Derive one-sided 95% CL limit

$\pmb{h} \rightarrow \tau \mu$ and $\pmb{h} \rightarrow \tau \pmb{e}$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Use VBF cuts (much lower BG than gg fusion)

Technicalities:

- Consider only 2-lepton final states here
- Use MadGraph 5, v1.4.6, Pythia 64, PGS
- Use only 120-160 GeV bin
- Derive one-sided 95% CL limit

$h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Use VBF cuts (much lower BG than gg fusion)

Technicalities:

- Consider only 2-lepton final states here
- Use MadGraph 5, v1.4.6, Pythia 64, PGS
- Use only 120–160 GeV bin
- Derive one-sided 95% CL limit

Result:

 ${\sf BR}(h o au\mu)<{\sf 0.13}\ {\sf BR}(h o aueta)<{\sf 0.13}$

Constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Strategy for a dedicated $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ search

Possible improvements:

- Different invariant mass formula (assuming 1 neutrino rather than 3)
 - Avoids smearing of signal
 - Shifts $Z \rightarrow \tau \tau$ peak to lower invariant mass
- Consider hadronic τ's (especially for CMS)
- Modified cuts
 - CMS $h \rightarrow \tau_{had} \tau_{\ell}$ search requires $m_T(\ell, p_T) < 40 \text{ GeV}$ to suppress W + jets
 - In $h \rightarrow \tau_{had} \mu$, neutrino and muon typically not collinear

 \rightarrow large $m_T(\ell, p_T)$

Strategy for a dedicated $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ search

Possible improvements:

- Different invariant mass formula (assuming 1 neutrino rather than 3)
 - Avoids smearing of signal
 - Shifts $Z \rightarrow \tau \tau$ peak to lower invariant mass
- Consider hadronic τ's (especially for CMS)
- Modified cuts
 - CMS $h \rightarrow \tau_{had} \tau_{\ell}$ search requires $m_T(\ell, p_T) < 40$ GeV to suppress W + jets
 - In $h \rightarrow \tau_{had} \mu$, neutrino and muon typically not collinear
 - \rightarrow large $m_T(\ell, p_T)$

Transverse mass of the $\mu - p_T$ system [GeV]

Strategy for a dedicated $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ search

For $Y_{\mu\tau}$, $Y_{\tau\mu}$ close to the current upper limits, spectacular signals possible.

Summary

- Flavor-violating Higgs couplings arise in
 - Models with several sources of electroweak symmetry breaking
 - Models with heavy fields coupled to the Higgs
- In the lepton sector:
 - ► Constraints from $\ell_1 \rightarrow \ell_2 + \gamma$, $\ell_1 \rightarrow \ell_2 + X$, μ -*e* conversion in nuclei, g 2, EDMs, $M \overline{M}$ oscillations
 - Strong constraints in the µ-e sector
 - Very weak constraints in the τe and $\tau \mu$ sectors
- In the quark sector:
 - Strong constraints on couplings to light quarks
 - Very weak constraints on couplings to top quarks
- At the LHC
 - Constraints on anomalous top–Higgs couplings from single top production
 - A recast ATLAS h → τ_ℓτ_ℓ search already provides strongest limits on h → τµ and h → τe
 - A dedicated search would be much more sensitive

Thank you!