Prospects of antideuteron detection from Dark Matter annihilations or decays at AMS-02 and GAPS

Sebastian Wild (TU München)

DESY Theory Workshop, September 26, 2012

Based on arXiv:1209.5539 in collaboration with Alejandro Ibarra

Sebastian Wild (TU München)

Prospects of antideuteron detection

2 Constraining \overline{d} prospects with PAMELA \overline{p}/p data

3 Coalescence model: enhancement of \bar{d} yield?

• Indirect DM detection:

Search for annihilation/decay products of Dark Matter in cosmic rays

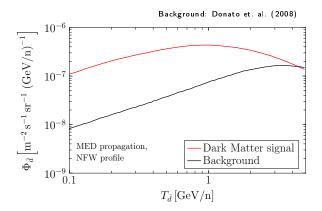
• Indirect DM detection:

Search for annihilation/decay products of Dark Matter in cosmic rays

• Motivation for using antideuterons $(\bar{d} = [\bar{p}\bar{n}])$: \bar{d} background flux is **supressed** for $T_{\bar{d}} \lesssim 1 \,\text{GeV/n}$

 \hookrightarrow kinematical supression of $ho + H o ar{d} \, (\, T_{ar{d}} \lesssim 1 \, {
m GeV/n}) + X$

• Indirect DM detection:


Search for annihilation/decay products of Dark Matter in cosmic rays

Motivation for using antideuterons (d

 [p̄n]):
 d
 background flux is supressed for T_d ≤ 1 GeV/n
 ⇒ kinematical supression of p + H → d
 (T_d ≤ 1 GeV/n) + X

The detection of **only a few** low-energetic antideuterons therefore can be a **smoking-gun signal** for DM annihilations or decays

• Example:
$$\chi \chi \to b \bar{b}$$
, $m_{\chi} = 100 \,\text{GeV}$, $\langle \sigma v \rangle = 3 \cdot 10^{-26} \,\text{cm}^3/\text{s}$

Current experimental situation

AMS-02 is currently taking data

Current experimental situation

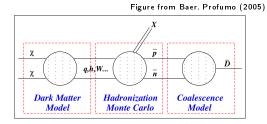
AMS-02 is currently taking data

GAPS is a balloon-borne experiment \hookrightarrow scheduled for 2016

Current experimental situation

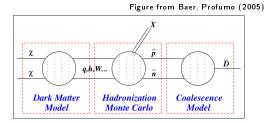
AMS-02 is currently taking data

GAPS is a balloon-borne experiment ↔ scheduled for 2016

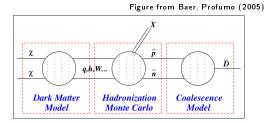

Main issue of this talk:

Prospects of DM discovery with antideuterons at AMS-02 / GAPS, taking into account \bar{p}/p constraints from PAMELA

Sebastian Wild (TU München)

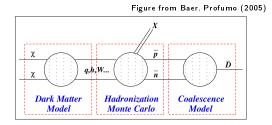

Prospects of antideuteron detection

Production of antideuterons in DM annihilations/decays

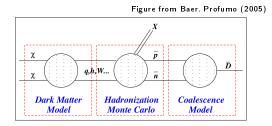

• Considered annihilation/decay channels: $\chi \chi o W^+ W^-$ and $\chi \chi o b \, ar{b}$

Production of antideuterons in DM annihilations/decays

- Considered annihilation/decay channels: $\chi \chi o W^+ W^-$ and $\chi \chi o b \, ar{b}$
- Hadronization simulated with PYTHIA 8


Production of antideuterons in DM annihilations/decays

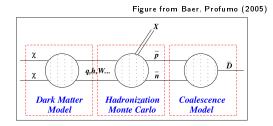
• Considered annihilation/decay channels: $\chi \chi \to W^+ W^-$ and $\chi \chi \to b \, \bar{b}$


- Hadronization simulated with PYTHIA 8
- We use three different halo profiles: NFW, Einasto and Isothermal
 → we investige the astrophysical uncertainties regarding our results

The coalescence model

Formation of an antideuteron: Coalescence model

The coalescence model



Formation of an antideuteron: Coalescence model

•
$$ar{d}$$
 forms if $\left|ec{k}_{ar{p}}-ec{k}_{ar{n}}
ight|\leq p_{0}=192\,\mathrm{MeV}$

 \hookrightarrow **Coalescence momentum** p_0 is tuned against measured \bar{d} yield per Z decay

The coalescence model

Formation of an antideuteron: Coalescence model

•
$$ar{d}$$
 forms if $\left|ec{k}_{ar{p}}-ec{k}_{ar{n}}
ight|\leq p_{0}=192\,\mathrm{MeV}$

 \hookrightarrow **Coalescence momentum** p_0 is tuned against measured \overline{d} yield per Z decay

• We search on an event-by-event basis for \bar{p} - \bar{n} pairs satisfying this condition

Propagation of antideuterons in the galaxy

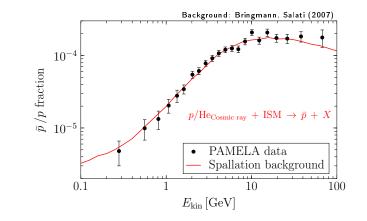
- We employ the usual two-zone diffusion model

 → diffusion, convection, annihilation
- We use three sample sets of propagation parameters, covering the allowed parameter space

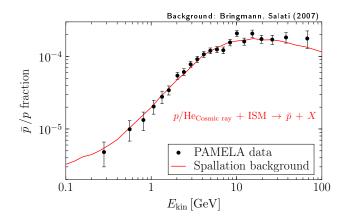
MINimial MEDium MAXimial

8 / 16

Let's ask:

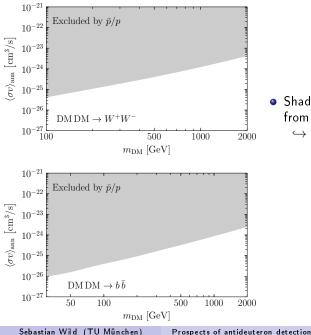

How many \overline{d} events can at most be expected at AMS-02 and GAPS?

Severe constraints from PAMELA measurement of **antiprotons**

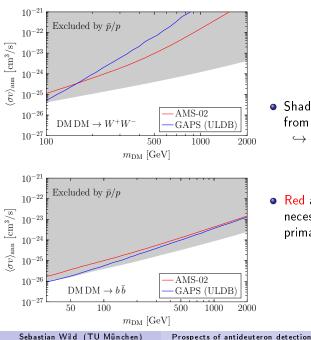

Sebastian Wild (TU München) Prospects of antideuteron detection September 26, 2012

9 / 16

PAMELA data on \bar{p}/p flux ratio



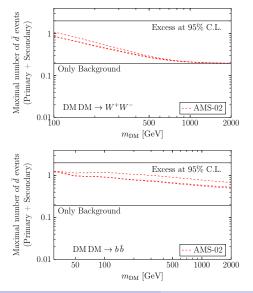
PAMELA data on \bar{p}/p flux ratio


 $\begin{array}{l} \Rightarrow \mbox{ No need for an exotic component} \\ \Rightarrow \mbox{ Antiproton constraints on Dark Matter models:} \\ \mbox{ Spallation background } + \mbox{ DM induced flux } \leq \mbox{ PAMELA data} \\ \end{array}$

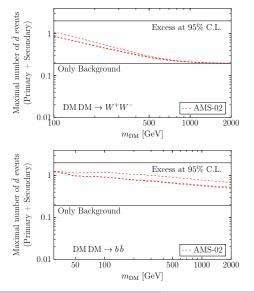
Sebastian Wild (TU München) Prospects of antideuteron detection September 26, 2012 10 / 16

- Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p
 - \hookrightarrow using NFW profile,

MED propagation parameters

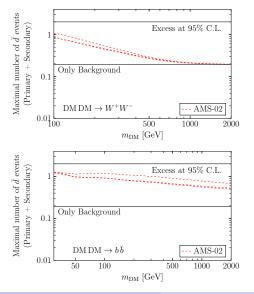


- Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p
 - \hookrightarrow using NFW profile,
 - MED propagation parameters
- Red and blue: cross sections necessary for an expectation of a primary \overline{d} signal at 95% C.L.


September 26, 2012

11 / 16

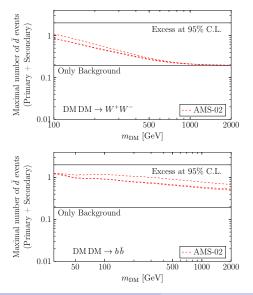
Maximimal number of \overline{d} events at AMS-02


Maximimal number of \overline{d} events at AMS-02

Red curves:

Maximal number of \overline{d} at AMS-02 compatible with \overline{p}/p constraints (MIN, MED, MAX)

Maximimal number of \overline{d} events at AMS-02

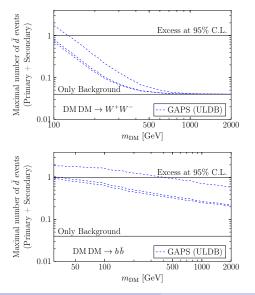


• Red curves: Maximal number of \overline{d} at AMS-02 compatible with \overline{p}/p constraints (MIN, MED, MAX)

 Propagation uncertainties largely cancel out (similar for halo profile uncertainties)

Sebastian Wild (TU München)

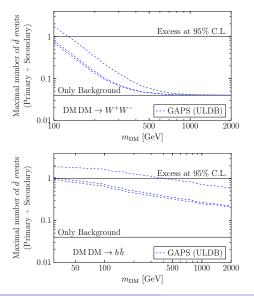
Maximimal number of \overline{d} events at AMS-02



• Red curves: Maximal number of \overline{d} at AMS-02 compatible with \overline{p}/p constraints (MIN, MED, MAX)

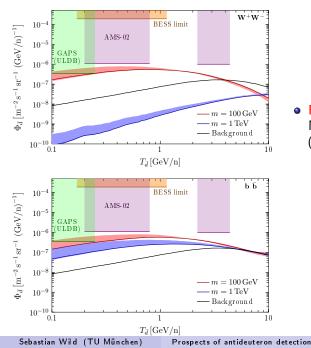
 Propagation uncertainties largely cancel out (similar for halo profile uncertainties)

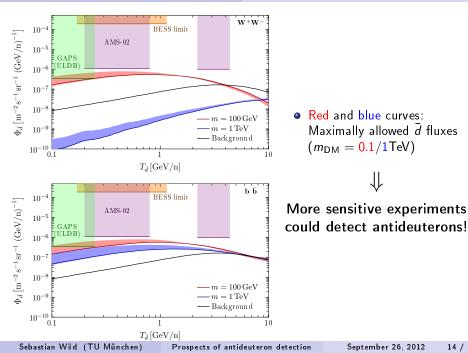
Excess at 95% C.L. (= 2 events) is in strong tension with \bar{p}/p constraints!


Maximimal number of \overline{d} events at GAPS (ULDB)

Blue curves:

Maximal number of \overline{d} at GAPS (ULDB) compatible with \overline{p}/p constraints (MIN, MED, MAX)


Maximimal number of \overline{d} events at GAPS (ULDB)


Blue curves:

Maximal number of \overline{d} at GAPS (ULDB) compatible with \overline{p}/p constraints (MIN, MED, MAX)

Excess at 95% C.L. (= 1 event) only possible for MAX propagation and $m_{\rm DM} < 125 \, {\rm GeV} \, (W^+W^-)$ $m_{\rm DM} < 400 \, {\rm GeV} \, (b\bar{b})$

• Red and blue curves: Maximally allowed \bar{d} fluxes $(m_{\rm DM} = 0.1/1 \text{TeV})$

14 / 16

Coalescence model: enhancement of \bar{d} yield?

Coalescence model: enhancement of \overline{d} yield?

- Standard calculation: \vec{d} forms if $\left| \vec{k}_{\vec{p}} \vec{k}_{\vec{n}} \right| \le p_0 = 192 \, \mathrm{MeV}$
 - $\hookrightarrow p_0$ is tuned against measured $ar{d}$ yield per Z decay
 - \hookrightarrow We also use this value of p_0

Coalescence model: enhancement of \bar{d} yield?

Coalescence model: enhancement of \overline{d} yield?

• Standard calculation: \vec{d} forms if $\left| \vec{k}_{\vec{p}} - \vec{k}_{\vec{n}} \right| \le p_0 = 192 \, \mathrm{MeV}$

 $\hookrightarrow p_0$ is tuned against measured $ar{d}$ yield per Z decay

- \hookrightarrow We also use this value of p_0
- However: By calibrating p₀ against several other experiments (p p, Υ decay, e⁻ p) we find a significant dependence of p₀ on the process and the energy: 133 MeV ≤ p₀ ≤ 236 MeV
 - $\hookrightarrow \overline{d}$ yield could be enhanced in DM annihilations/decays by a factor of $\sim \left(p_0/192 \text{ MeV}\right)^3 \simeq 2$

Coalescence model: enhancement of \bar{d} yield?

Coalescence model: enhancement of \bar{d} yield?

• Standard calculation: \vec{d} forms if $\left| \vec{k}_{\vec{p}} - \vec{k}_{\bar{n}} \right| \le p_0 = 192 \, {
m MeV}$

 $\hookrightarrow p_0$ is tuned against measured $ar{d}$ yield per Z decay

- \hookrightarrow We also use this value of ho_0
- However: By calibrating p₀ against several other experiments (p p, Υ decay, e⁻ p) we find a significant dependence of p₀ on the process and the energy: 133 MeV ≤ p₀ ≤ 236 MeV
 - $\hookrightarrow \overline{d}$ yield could be enhanced in DM annihilations/decays by a factor of $\sim \left(p_0/192 \ {
 m MeV}
 ight)^3 \simeq 2$

Coalescence model needs further investigation! More lab experiments with antideuterons are needed for a better understanding of the coalescence process!

• Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \bar{d} signal from DM annihilations or decays:

Conclusion

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \overline{d} signal from DM annihilations or decays:
 - at AMS-02: \bar{d} signal is **highly unlikely**, independent of the propagation parameters or halo profile

Conclusion

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \overline{d} signal from DM annihilations or decays:
 - at AMS-02: \overline{d} signal is **highly unlikely**, independent of the propagation parameters or halo profile
 - at GAPS (ULDB): \bar{d} signal only possible for specific propagation setups, small enough $m_{\rm DM}$ and for saturation of the PAMELA \bar{p}/p limits

Conclusion

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \overline{d} signal from DM annihilations or decays:
 - at AMS-02: \overline{d} signal is **highly unlikely**, independent of the propagation parameters or halo profile
 - at GAPS (ULDB): \bar{d} signal only possible for specific propagation setups, small enough $m_{\rm DM}$ and for saturation of the PAMELA \bar{p}/p limits

(All conclusions also apply for decaying Dark Matter)

Conclusion

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \bar{d} signal from DM annihilations or decays:
 - at AMS-02: \overline{d} signal is **highly unlikely**, independent of the propagation parameters or halo profile
 - at GAPS (ULDB): \bar{d} signal only possible for specific propagation setups, small enough $m_{\rm DM}$ and for saturation of the PAMELA \bar{p}/p limits

(All conclusions also apply for decaying Dark Matter)

 \Rightarrow More sensitive experiments for antideuterons are necessary

Conclusion

- Non-observation of an excess in antiprotons puts severe constraints on the possibility of a \bar{d} signal from DM annihilations or decays:
 - at AMS-02: \overline{d} signal is **highly unlikely**, independent of the propagation parameters or halo profile
 - at GAPS (ULDB): \bar{d} signal only possible for specific propagation setups, small enough $m_{\rm DM}$ and for saturation of the PAMELA \bar{p}/p limits

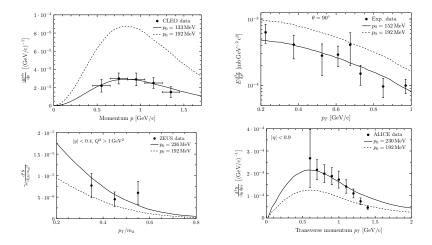
(All conclusions also apply for decaying Dark Matter)

\Rightarrow More sensitive experiments for antideuterons are necessary

- We found an energy and process dependent coalescence momentum p_0
 - $\hookrightarrow \mathsf{Coalescence\ model\ seems\ not\ to\ be\ fully\ understood!}$
 - \hookrightarrow Further investigations necessary!

Sebastian Wild (TU München)

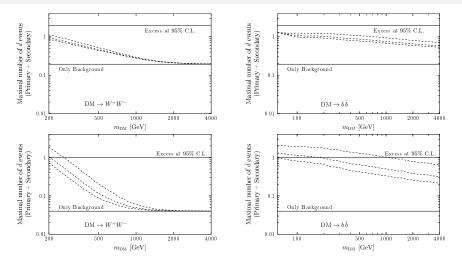
Prospects of antideuteron detection


Backup slides

Backup slides

Sebastian Wild (TU München) Prospects of antideuteron detection September 26, 2012 17 / 16

Backup slides


Determination of the coalescence momentum p_0

Top left: Υ decay, top right: pp collisions at $\sqrt{s} = 53$ GeV (CERN ISR), bottom left: e^-p collisions at $\sqrt{s} = 318$ GeV (ZEUS), bottom right: pp collisions at $\sqrt{s} = 7$ TeV (ALICE, deuteron spectrum) Sebastian Wild (TU München) Prospects of antideuteron detection September 26, 2012 18 / 16

Backup slides

Maximal number of events for decaying Dark Matter

Upper panel: AMS-02, lower panel: GAPS (ULDB)

Sebastian Wild (TU München)

Prospects of antideuteron detection

September 26, 2012 19 / 16