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Evidences @

» There is an overwhelmingly ammount of evidences for the
existance of Dark Matter (DM).

NGC 6503
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» The job we have now is to find out what its (mysterious)
nature is.



Indirect Detection
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» Compute the expected flux of SM particles on earth
» Antiprotons, Antideuterons...
» Neutrinos
» Gamma-rays



Indirect Detection @

» Compute the expected flux of SM particles on earth
» Antiprotons, Antideuterons...
» Neutrinos
» Gamma-rays
» Compare with the expected background and look for
excesses
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Indirect Detection @

Identify Dark Matter through indirect observations:

» Spectral features are a very clean way to spot Dark Matter
— smoking-guns
» Gamma-ray features:

» Gamma-ray lines
» Internal bremsstrahlung
» Gamma-ray “boxes” (this talk)



Box-shaped spectrum @

» Consider a one-step cascade annihilation (or decay):

XX — Q9 = ¢ — 7Y
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» Energy of the photons in the rest frame of ¢: ESF = me/2



Box-shaped spectrum @
» Consider a one-step cascade annihilation (or decay):

XX — ¢ = ¢ — vy

» Energy of the photons in the rest frame of ¢: E,FY{F =mgy/2
» Momentum of the intermediate scalar py =

m2 _m2

X ¢
» Energy of the photons in the lab frame
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» The spectrum is characterized by m, & Am = m, —my



Box-shaped spectrum

» Consider a one-step cascade annihilation (or decay):

XX — QP = ¢ — Y
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Observed flux @

» Flux

d*N, (ov) dN, 1

dE,dSdQdt — 8mm2 dE, AQ Jaq

oy (Ey) dQ Jann

1076, 06—
centre region T centre region
o 107 Mow =100 GeV o 107 Mou =100 GeV
B N m, =60 GeV B -, <ov>=3x10%cm%
» 107 Te.. <ov>=3x10%emi%l |, 10°° .-
o - & T.l 9.9
£ o F w0 Wy
T e T m, =10GeV
< = 3 B
© 107 N © 10« & * 'S
< . < i
101 !III 101 !III
1 I
5 10

2 5 10 20 50 100 200 2 20 50 100 200
E, [Gev] E, 1Gev]

» Am/m, — 0 = monochromatic line with 4~y
» Am/m, — 1 = dimmer but wider signal
» Fo = My / 2



Comparing models with experimental data @

» The gamma-ray signal is characterized by the parameters

(Mmy, (0V)yx—opp, Am) or  (my, Typp, Am)

» We consider BR(¢p — vy) =1

> We derive limits at 95% C.L. from comparing ¢~ + ¢4 to
the Fermi-LAT data
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Constraints - annihilation @
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» The strongest constraints come from the degenerate case
(gamma-line-like spectrum)

» Although LAT’s highest energy bin is at 280 GeV, heavier
DM particles are also strongly constrained

» Saturation from Am/m, 2 0.05



All three approaches @
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» Band encompasses almost two orders of magnitude at low
masses and less than one at high masses

» Compare with constraints from gamma-ray lines:

Am/m, — 0, my —my/2 & 27— 4y



Accomodating the 130 GeV line @
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» Annihilating DM with m, ~ 260 GeV and Am small
enough reproduces the excess

» The cross-section for the process depends on BR(¢ — ~7)
(For BR =1 — (ov) = 2.54 x 10727 cm3s™1)

» Although this was not our aim, the 130 GeV excess can be
elegantly explained with boxes
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» An intermediate scalar ¢ coupling to x



Concrete model

What do we need?
» A stable DM particle x
» An intermediate scalar ¢ coupling to x
» Sizeable BR of ¢ into photons



Concrete model

H.M.Lee,M.Park,W.I.Park 1205.1675 @‘
Inspired in the Peccei-Quinn mechanism expand the Ggas

a U(l)PQ global symmetry
» Introduce a fermion x and a complex scalar field S both
with a U(l)PQ charge. The SM transforms trivialy under
this group.



Concrete model

H.M.Lee,M.Park,W.I.Park 1205.1675 @‘
Inspired in the Peccei-Quinn mechanism expand the Ggas

a U(l)PQ global symmetry
» Introduce a fermion x and a complex scalar field S both
with a U(l)PQ charge. The SM transforms trivialy under
this group.
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» VEV of (S) = \% — spontaneous breaking of U(l)PQ
> S=vs+s+ia

> Mg > My > My
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Conclusions @

» We have studied a scenario that produces a gamma-ray
spectral feature. If observed inequivocal signal of DM
(perhaps already observed?). It circumvents some
difficulties for (ov) thanks to the tuning with BR.

» Scenarios with an annihilation cross-section equal to the
thermal one can be probed using gamma-ray observations
(providing the BR is sizeable).

» This scenario can be realized in concrete (simple) particle
physics models.



	Outline
	Dark Matter and Indirect Detection
	The box-shaped spectrum
	Analysis and constraints
	Concrete model
	Conclusions

